Full Text:   <3324>

Summary:  <2261>

CLC number: TP202

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-11-06

Cited: 0

Clicked: 6903

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jun Wang

http://orcid.org/0000-0002-3291-7214

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2015 Vol.16 No.12 P.1034-1045

http://doi.org/10.1631/FITEE.1500099


Developing a power monitoring and protection system for the junction boxes of an experimental seafloor observatory network


Author(s):  Jun Wang, De-jun Li, Can-jun Yang, Zhi-feng Zhang, Bo Jin, Yan-hu Chen

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   rongjie5257@163.com, li_dejun@zju.edu.cn

Key Words:  Power monitoring and protection, Embedded processor, Seafloor observatory network, IEEE 1588, Junction boxes


Jun Wang, De-jun Li, Can-jun Yang, Zhi-feng Zhang, Bo Jin, Yan-hu Chen. Developing a power monitoring and protection system for the junction boxes of an experimental seafloor observatory network[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(12): 1034-1045.

@article{title="Developing a power monitoring and protection system for the junction boxes of an experimental seafloor observatory network",
author="Jun Wang, De-jun Li, Can-jun Yang, Zhi-feng Zhang, Bo Jin, Yan-hu Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="12",
pages="1034-1045",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500099"
}

%0 Journal Article
%T Developing a power monitoring and protection system for the junction boxes of an experimental seafloor observatory network
%A Jun Wang
%A De-jun Li
%A Can-jun Yang
%A Zhi-feng Zhang
%A Bo Jin
%A Yan-hu Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 12
%P 1034-1045
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500099

TY - JOUR
T1 - Developing a power monitoring and protection system for the junction boxes of an experimental seafloor observatory network
A1 - Jun Wang
A1 - De-jun Li
A1 - Can-jun Yang
A1 - Zhi-feng Zhang
A1 - Bo Jin
A1 - Yan-hu Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 12
SP - 1034
EP - 1045
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500099


Abstract: 
A power monitoring and protection system based on an embedded processor was designed for the junction boxes (JBs) of an experimental seafloor observatory network in China. The system exhibits high reliability, fast response, and high real-time performance. A two-step power management method which uses metal-oxide-semiconductor field-effect transistors (MOSFETs) and a mechanical contactor in series was adopted to generate a reliable power switch, to limit surge currents and to facilitate automatic protection. Grounding fault diagnosis and environmental monitoring were conducted by designing a grounding fault detection circuit and by using selected sensors, respectively. The data collected from the JBs must be time-stamped for analysis and for correlation with other events and data. A highly precise system time, which is necessary for synchronizing the times within and across nodes, was generated through the IEEE 1588 (precision clock synchronization protocol for networked measurement and control systems) time synchronization method. In this method, time packets were exchanged between the grandmaster clock at the shore station and the slave clock module of the system. All the sections were verified individually in the laboratory prior to a sea trial. Finally, a subsystem for power monitoring and protection was integrated into the complete node system, installed in a frame, and deployed in the South China Sea. Results of the laboratory and sea trial experiments demonstrated that the developed system was effective, stable, reliable, and suitable for continuous deep-sea operation.

The authors describe a power management and control system for a cabled ocean observatory in the South China Sea, demonstrated in a sea trial. It is an interesting paper.

海底观测试验网络接驳盒电能监控与保障系统的开发

目的:接驳盒是水下科学仪器和岸基站之间用来传输电能和通讯的中间处理节点,是海底观测网必不可少的部分。接驳盒电能监控与保障系统主要处理电能分配、浪涌电流抑制、实时监控、接地故障检测、精确时间同步以及针对出现故障的自动响应,其对海底观测网的长期稳定可靠工作具有至关重要的作用。
创新点:选用工业嵌入式控制器获取强抗干扰能力和高可靠性,且所用的控制器具备时间同步模块,可提供微秒级别精度的授时信号。设计并采用功率电阻和接触器并联组成的简单可靠的浪涌电流抑制电路。
方法:两步电能管理方法采用一对并联的金属氧化物场效应管(MOSFET)和一个接触器串联用来产生可靠的电能接驳,抑制浪涌电流,促进自动保护。分别采用设计的接地故障检测电路和传感器来实现接地故障诊断和环境信号监测。采用IEEE 1588(网络测量和控制系统的精密时钟同步协议标准)时间同步方法为接驳盒节点内外提供微秒级别高精度授时信号。
结论:布放前,在实验室环境下对系统的每一部分进行了功能性和可靠性测试,并最终在中国南海进行了海试布放。试验和海试结果表明,所开发的电能监控与保障系统能实现可靠的电能管理、准确的接地阻抗测试、精确的时间同步等功能。

关键词:电能监控与保障;嵌入式处理器;海底观测网;IEEE 1588;接驳盒

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aguzzi, J., Mànuel, A., Condal, F., et al., 2011. The new seafloor observatory (OBSEA) for remote and long-term coastal ecosystem monitoring. Sensors, 11(6):5850-5872.

[2]Barnes, C.R., Tunnicliffe, V., 2008. Building the world’s first multi-node cabled ocean observatories (NEPTUNE Canada and VENUS, Canada): science, realities, challenges and opportunities. Proc. OCEANS, p.1-8.

[3]Cena, G., Bertolotti, I.C., Scanzio, S., et al., 2012. Evaluation of EtherCAT distributed clock performance. IEEE Trans. Ind. Inform., 8(1):20-29.

[4]Chan, T., 2007. Analytical Methods for Power Monitoring and Control in an Underwater Observatory. PhD Thesis, University of Washington, USA.

[5]Chave, A.D., Waterworth, G., Maffei, A.R., et al., 2004. Cabled ocean observatory systems. Mar. Technol. Soc. J., 38(2):30-43.

[6]Chen, Y.H., Yang, C.J., Li, D.J., et al., 2012. Development of a direct current power system for a multi-node cabled ocean observatory system. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(8):613-623.

[7]Chen, Y.H., Yang, C.J., Li, D.J., et al., 2013. Study on 10 kV DC powered junction box for a cabled ocean observatory system. China Ocean Eng., 27(2):265-275.

[8]del Río, J., Toma, D., Shariat-Panahi, S., et al., 2012. Precision timing in ocean sensor systems. Meas. Sci. Technol., 23(2):025801.1-025801.7.

[9]Dewey, R., Tunnicliffe, V., 2003. VENUS: future science on a coastal mid-depth observatory. Proc. 3rd Int. Workshop on Scientific Use of Submarine Cables and Related Technologies, p.232-233.

[10]Han, J., Jeong, D., 2010. A practical implementation of IEEE 1588-2008 transparent clock for distributed measurement and control systems. IEEE Trans. Instrument. Meas., 59(2):433-439.

[11]Howe, B.M., Chan, T., El-Sharkawi, M., et al., 2006. Power System for the MARS Ocean Cabled Observatory. Available from http://neptunepower.apl.washington.edu/publications/documents/psftmoco.pdf [Accessed on Mar. 9, 2015].

[12]Hsu, S.K., Lee, C.S., Shin, T.C., et al., 2007. Marine cable hosted observatory (MACHO) project in Taiwan. Proc. Symp. on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, p.305-307.

[13]Ioannides, M.G., 2004. Design and implementation of PLC-based monitoring control system for induction motor. IEEE Trans. Energy Conv., 19(3):469-476.

[14]Kawaguchi, K., Kaneda, Y., Araki, E., 2008. The DONET: a real-time seafloor research infrastructure for the precise earthquake and tsunami monitoring. Proc. OCEANS, p.1-4.

[15]Lentz, S., Lécroart, A., 2009. Precision timing in the NEPTUNE Canada network. Proc. OCEANS, p.1-5.

[16]Li, D.J., Wang, G., Yang, C.J., et al., 2013. IEEE 1588 based time synchronization system for a seafloor observatory network. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(10):766-776.

[17]Li, D.J., Wang, J., Zhang, Z.F., et al., 2015. Research and implementation of an IEEE 1588 PTP-based time synchronization system for Chinese experimental ocean observatory network. Mar. Technol. Soc. J., 49(1):47-58.

[18]Lu, S., 2006. Infrastructure, Operations, and Circuits Design of an Undersea Power System. PhD Thesis, University of Washington, USA.

[19]Milevsky, A., Walrod, J., 2008. Development and test of IEEE 1588 precision timing protocol for ocean observatory networks. Proc. OCEANS, p.1-7.

[20]Ouellette, M., Ji, K., Liu, S., et al., 2011. Using IEEE 1588 and boundary clocks for clock synchronization in telecom networks. IEEE Commun. Mag., 49(2):164-171.

[21]Pirenne, B., Guillemot, E., 2009. The data management system for the VENUS and NEPTUNE cabled observatories. Proc. OCEANS, p.1-4.

[22]Qi, J., Wang, L., Jia, H., et al., 2010. Design and performance evaluation of networked data acquisition systems based on EtherCAT. Proc. 2nd IEEE Int. Conf. on Information Management and Engineering, p.467-469.

[23]Sun, T., Zhao, B., Li, F., 2011. Application of WinCC in carplant monitoring system. Proc. Int. Symp. on Computer Science and Society, p.203-205.

[24]Woodroffe, A.M., Pridie, S.W., Druce, G., 2008. The NEPTUNE Canada junction box-interfacing science instruments to sub-sea cabled observatories. Proc. OCEANS, p.1-5.

[25]Yu, Y., Xu, H., Jiang, E., 2011. The primary research of the junction box based seafloor observatory remote control system. Proc. Int. Conf. on Multimedia Technology, p.3750-3753.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE