Full Text:   <2972>

Summary:  <1780>

CLC number: TN911.7

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-11-08

Cited: 0

Clicked: 6503

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ding Wang

http://orcid.org/0000-0001-6533-9206

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.12 P.1360-1387

http://doi.org/10.1631/FITEE.1500285


A performance analysis of multi-satellite joint geolocation


Author(s):  Ding Wang, Shuai Wei, Ying Wu

Affiliation(s):  National Digital Switching System Engineering & Technological Research Center, Zhengzhou 450002, China; more

Corresponding email(s):   wang_ding814@aliyun.com

Key Words:  Satellite geolocation, Time difference of arrival (TDOA), Cramer-Rao bound (CRB), Calibration sources, Performance analysis


Ding Wang, Shuai Wei, Ying Wu. A performance analysis of multi-satellite joint geolocation[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(12): 1360-1387.

@article{title="A performance analysis of multi-satellite joint geolocation",
author="Ding Wang, Shuai Wei, Ying Wu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="12",
pages="1360-1387",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500285"
}

%0 Journal Article
%T A performance analysis of multi-satellite joint geolocation
%A Ding Wang
%A Shuai Wei
%A Ying Wu
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 12
%P 1360-1387
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500285

TY - JOUR
T1 - A performance analysis of multi-satellite joint geolocation
A1 - Ding Wang
A1 - Shuai Wei
A1 - Ying Wu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 12
SP - 1360
EP - 1387
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500285


Abstract: 
Determining the position of an emitter on Earth by using a satellite cluster has many important applications, such as in navigation, surveillance, and remote sensing. However, in realistic situations, a number of factors, such as errors in the measurement of signal parameters, uncertainties regarding the position of satellites, and errors in the location of calibration sources, are known to degrade the accuracy of target localization in satellite geolocation systems. We systematically analyze the performance of multi-satellite joint geolocation based on time difference of arrival (TDOA) measurements. The theoretical analysis starts with Cramér–Rao bound (CRB) derivations for four localization scenarios under an altitude constraint and Gaussian noise assumption. In scenario 1, only the TDOA measurement errors of the emitting source are considered and the satellite positions are assumed to be perfectly estimated. In scenario 2, both the TDOA measurement errors and satellite position uncertainties are taken into account. Scenario 3 assumes that some calibration sources with accurate position information are used to mitigate the influence of satellite position perturbations. In scenario 4, several calibration sources at inaccurate locations are used to alleviate satellite position errors in target localization. Through comparing the CRBs of the four localization scenarios, some valuable’s insights are gained into the effects of various error sources on the estimation performance. Two kinds of location mean-square errors (MSE) expressions under the altitude constraint are derived through first-order perturbation analysis and the Lagrange method. The first location MSE provides the theoretical prediction when an estimator assumes that the satellite locations are accurate but in fact have errors. The second location MSE provides the localization accuracy if an estimator assumes that the known calibration source locations are precise while in fact erroneous. Simulation results are included to verify the theoretical analysis.

多星联合定位理论性能分析

概要:为利用卫星束确定地球表面目标的位置信息具有很多重要应用,例如导航,监控,遥感等。然而,在实际条件下,会有很多因素影响卫星定位系统的精度,比如说信号参数的测量误差,卫星位置误差以及校正源的位置误差。本文基于时差观测量系统分析了多星联合定位的理论性能。首先在基于目标高程约束和高斯误差的假设下,推导四种定位场景下目标位置估计方差的克拉美罗界。第一种场景仅考虑时差观测量误差,并且假设卫星位置精确已知;第二种场景同时考虑时差观测量误差和卫星位置误差;第三种场景假设存在若干位置信息精确已知的校正源,其用于消除卫星位置的影响;第四种场景则假设校正源位置也存在测量误差。此外,文中基于一阶扰动分析和拉格朗日方法推导了两种情形下的定位均方根误差的表达式。第一种情形是假设卫星位置精确已知但实际上却含有误差;第二种情形则是假设校正源位置精确已知但实际上却含有误差。仿真结果验证了文中理论分析的有效性。

关键词:卫星定位;时差;克拉美罗界;校正源;性能分析

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bardelli, R., Haworth, D., Smith, N., 1995. Interference localization for the EUTELSAT satellite system. Proc. IEEE Int. Conf. on Globecom, p.1641-1651.

[2]Cheung, K.W., So, H.C., Ma, W.K., et al., 2006. A constrained least squares approach to mobile positioning: algorithms and optimality. EURASIP J. Appl. Signal Process., 2006: 1-23.

[3]Ding, W., 2014. The geolocation performance analysis for the constrained Taylor-series iteration in the presence of saellite orbit perturbations. Sci. China Inform. Sci., 44(2):231-253.

[4]Ha, T.T., Robertson, R.C., 1987. Geostationary satellite navigation systems. IEEE Trans. Aerosp. Electron. Syst., 23(2):247-254.

[5]Haworth, D.P., Smith, N.G., Bardelli, R., et al., 1997. Interference localization for EUTELSAT satellites—the first European transmitter location system. Int. J. Satell. Commun., 15(4):155-183.

[6]Ho, K.C., Xu, W.W., 2004. An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans. Signal Process., 52(9):2453-2463.

[7]Ho, K.C., Yang, L., 2008. On the use of a calibration emitter for source localization in the presence of sensor position uncertainty. IEEE Trans. Signal Process., 56(12):5758- 5772.

[8]Ho, K.C., Lu, X.N., Kovavisaruch, L., 2007. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans. Signal Process., 55(2):684-696.

[9]Ho, K.C., Chan, Y.T., 1993. Solution and performance analysis of geolocation by TDOA. IEEE Trans. Aerosp. Electron. Syst., 29(4):1311-1322.

[10]Ho, K.C., Chan, Y.T., 1997. Geolocation of a known altitude object from TDOA and FDOA measurements. IEEE Trans. Aerosp. Electron. Syst., 33(3):770-783.

[11]Huang, Y., Benesty, J., Elko, G.W., et al., 2001. Real-time passive source localization: a practical linear-correction least-squares approach. IEEE Trans. Speech Audio Process., 9(8):943-956.

[12]Kovavisaruch, L., Ho, K.C., 2005. Modified Taylor-series method for source and receiver localization using TDOA measurements with erroneous receiver positions. Proc. IEEE Int. Symp. on Circuits and Systems, p.2295-2298.

[13]Lee, K.E., Ahn, D.M., Lee, Y.J., et al., 2000. A total squares algorithm for the source location estimation using GEO satellites. Proc. 21st Century Military Communications Conf., p.271-275.

[14]Lu, X.N., Ho, K.C., 2006a. Taylor-series technique for source localization using AOAs in the presence of sensor location errors. Proc. 4th IEEE Workshop on Sensor Array and Multichannel Processing, p.190-194.

[15]Lu, X.N., Ho, K.C., 2006b. Analysis of the degradation in source location accuracy in the presence of sensor location error. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.925-928.

[16]Marzetta, T.L., 1993. A simple derivation of the constrained multiple parameter Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process., 41(6):2247-2249.

[17]Mason, J., 2004. Algebraic two-satellite TOA/FOA position solution on an ellipsoidal Earth. IEEE Trans. Aerosp. Electron. Syst., 40(3):1087-1092.

[18]Mušicki, D., Koch, W., 2008. Geolocation using TDOA and FDOA measurements. Proc. 11th IEEE Int. Conf. on Information Fusion, p.1-8.

[19]Mušicki, D., Kaune, R., Koch, W., 2010. Mobile emitter geolocation and tracking using TDOA and FDOA measurements. IEEE Trans. Signal Process., 58(3):1863-1874.

[20]Niezgoda, G.H., Ho, K.C., 1994. Geolocalization by combined range difference and range rate difference measurements. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.357-360.

[21]Pattison, T., Chou, S.I., 2000. Sensitivity analysis of dual- satellite geolocation. IEEE Trans. Aerosp. Electron. Syst., 36(1):56-71.

[22]Witzgall, H., 2014. Ground vehicle Doppler geolocation. Proc. IEEE Int. Conf. on Aerospace, p.1-8.

[23]Wu, S.L., Luo, J.Q., 2009. Influence of position error on TDOA and FDOA measuring of dual-satellite passive location system. Proc. 3rd IEEE Int. Symp. on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, p.293-296.

[24]Yang, K., An, J.P., Bu, X.Y., et al., 2010. Constrained total least-squares location algorithm using time-difference- of-arrival measurements. IEEE Trans. Veh. Technol., 59(3):1558-1562.

[25]Yang, K.H., Jiang, L.Z., Luo, Z.Q., 2011. Efficient semidefinite relaxation for robust geolocation of unknown emitter by a satellite cluster using TDOA and FDOA measurements. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.2584-2587.

[26]Yang, L., Ho, K.C., 2010a. On using multiple calibration emitters and their geometric effects for removing sensor position errors in TDOA localization. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.14-19.

[27]Yang, L., Ho, K.C., 2010b. Alleviating sensor position error in source localization using calibration emitters at inaccurate locations. IEEE Trans. Signal Process., 58(1):67-83.

[28]Yu, H., Huang, G., Gao, J., 2012. Constrained total least-squares localization algorithm using time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties. IET Radar Sonar Navig., 6(9):891-899.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE