CLC number: TP13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-07-08
Cited: 0
Clicked: 6476
Che Lin, Rong-hao Zheng, Gang-feng Yan, Shi-yuan Lu. Convergence analysis of distributed Kalman filtering for relative sensing networks[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(9): 1063-1075.
@article{title="Convergence analysis of distributed Kalman filtering for relative sensing networks",
author="Che Lin, Rong-hao Zheng, Gang-feng Yan, Shi-yuan Lu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="9",
pages="1063-1075",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700066"
}
%0 Journal Article
%T Convergence analysis of distributed Kalman filtering for relative sensing networks
%A Che Lin
%A Rong-hao Zheng
%A Gang-feng Yan
%A Shi-yuan Lu
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 9
%P 1063-1075
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700066
TY - JOUR
T1 - Convergence analysis of distributed Kalman filtering for relative sensing networks
A1 - Che Lin
A1 - Rong-hao Zheng
A1 - Gang-feng Yan
A1 - Shi-yuan Lu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 9
SP - 1063
EP - 1075
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700066
Abstract: We study the distributed Kalman filtering problem in relative sensing networks with rigorous analysis. The relative sensing network is modeled by an undirected graph while nodes in this network are running homogeneous dynamical models. The sufficient and necessary condition for the observability of the whole system is given with detailed proof. By local information and measurement communication, we design a novel distributed suboptimal estimator based on the Kalman filtering technique for comparison with a centralized optimal estimator. We present sufficient conditions for its convergence with respect to the topology of the network and the numerical solutions of n linear matrix inequality (LMI) equations combining system parameters. Finally, we perform several numerical simulations to verify the effectiveness of the given algorithms.
[1]Chen C, Yan J, Lu N, et al., 2015. Ubiquitous monitoring for industrial cyber-physical systems over relay-assisted wireless sensor networks. IEEE Trans Emerg Top Comput, 3(3):352-362.
[2]Chen M, González-Valenzuela S, Cao H, et al., 2013. Enabling low bit-rate and reliable video surveillance over practical wireless sensor network. J Supercomput, 65(1):287-300.
[3]Duan Z, Li X, 2011. Lossless linear transformation of sensor data for distributed estimation fusion. IEEE Trans Signal Proc, 59(1):362-372.
[4]Fadel E, Gungor V, Nassef L, et al., 2015. A survey on wireless sensor networks for smart grid. Comput Commun, 71:22-33.
[5]Gao Y, Li X, Song E, 2016. Robust linear estimation fusion with allowable unknown cross-covariance. IEEE Trans Syst Man Cybern Syst, 46(9):1314-1325.
[6]Garcia-Sanchez AJ, Garcia-Sanchez F, Garcia-Haro J, 2011. Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Comput Electron Agric, 75(2):288-303.
[7]Godsil C, Royle G, 2001. Algebraic Graph Theory. Springer-Verlag.
[8]Li S, Peng S, Chen W, et al., 2013. Income: practical land monitoring in precision agriculture with sensor networks. Comput Commun, 36(4):459-467.
[9]Lin Z, Wang L, Han Z, et al., 2014. Distributed formation control of multi-agent systems using complex Laplacian. IEEE Trans Autom Contr, 59(7):1765-1777.
[10]Lu S, Lin C, Lin Z, et al., 2015. Distributed kalman filter for relative sensing networks. 34th Chinese Control Conf, p.7541-7546.
[11]Morbidi F, Mariottini G, Prattichizzo D, 2010. Observer design via immersion and invariance for vision-based leader-follower formation control. Automatica, 46(1):148-154.
[12]Olfati-Saber R, 2009. Kalman-consensus filter: optimality, stability, and performance. Proc 48th IEEE Conf on Decision and Control held jointly with the 28th Chinese Control Conf, p.7036-7042.
[13]Olfati-Saber R, Jalalkamali P, 2012. Coupled distributed estimation and control for mobile sensor networks. IEEE Trans Autom Contr, 57(10):2609-2614.
[14]Pasqualetti F, Carli R, Bullo F, 2012. Distributed estimation via iterative projections with application to power network monitoring. Automatica, 48(5):747-758.
[15]Piovan G, Shames I, Fidan B, et al., 2013. On frame and orientation localization for relative sensing networks. Automatica, 49(1):206-213.
[16]Ravazzi C, Frasca P, Tempo R, et al., 2013. Almost sure convergence of a randomized algorithm for relative localization in sensor networks. Proc 52nd IEEE Conf on Decision and Control, p.4778-4783.
[17]Tubaishat M, Zhuang P, Qi Q, et al., 2009. Wireless sensor networks in intelligent transportation systems. Wirel Commun Mob Comput, 9(3):287-302.
[18]Zhou Z, Fang H, Hong Y, 2013. Distributed estimation for moving target based on state-consensus strategy. IEEE Trans Autom Contr, 58(8):2096-2101.
Open peer comments: Debate/Discuss/Question/Opinion
<1>