Full Text:   <2016>

Summary:  <1749>

CLC number: TP242

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-10-10

Cited: 0

Clicked: 6131

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Can-jun Yang

http://orcid.org/0000-0002-3712-0538

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.10 P.1322-1330

http://doi.org/10.1631/FITEE.1800777


Fall preventive gait trajectory planning of a lower limb rehabilitation exoskeleton based on capture point theory


Author(s):  Mei-ying Deng, Zhang-yi Ma, Ying-nan Wang, Han-song Wang, Yi-bing Zhao, Qian-xiao Wei, Wei Yang, Can-jun Yang

Affiliation(s):  Zhejiang University Hospital, Hangzhou 310027, China; more

Corresponding email(s):   ycj@zju.edu.cn

Key Words:  Lower extremity exoskeleton, Capture point, Gait phase]>


Mei-ying Deng, Zhang-yi Ma, Ying-nan Wang, Han-song Wang, Yi-bing Zhao, Qian-xiao Wei, Wei Yang, Can-jun Yang. Fall preventive gait trajectory planning of a lower limb rehabilitation exoskeleton based on capture point theory[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(10): 1322-1330.

@article{title="Fall preventive gait trajectory planning of a lower limb rehabilitation exoskeleton based on capture point theory",
author="Mei-ying Deng, Zhang-yi Ma, Ying-nan Wang, Han-song Wang, Yi-bing Zhao, Qian-xiao Wei, Wei Yang, Can-jun Yang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="10",
pages="1322-1330",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800777"
}

%0 Journal Article
%T Fall preventive gait trajectory planning of a lower limb rehabilitation exoskeleton based on capture point theory
%A Mei-ying Deng
%A Zhang-yi Ma
%A Ying-nan Wang
%A Han-song Wang
%A Yi-bing Zhao
%A Qian-xiao Wei
%A Wei Yang
%A Can-jun Yang
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 10
%P 1322-1330
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800777

TY - JOUR
T1 - Fall preventive gait trajectory planning of a lower limb rehabilitation exoskeleton based on capture point theory
A1 - Mei-ying Deng
A1 - Zhang-yi Ma
A1 - Ying-nan Wang
A1 - Han-song Wang
A1 - Yi-bing Zhao
A1 - Qian-xiao Wei
A1 - Wei Yang
A1 - Can-jun Yang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 10
SP - 1322
EP - 1330
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800777


Abstract: 
We study the balance problem caused by forward leaning of the wearer’s upper body during rehabilitation training with a lower limb rehabilitation exoskeleton. The instantaneous capture point is obtained by modeling the human-exoskeleton system and using the capture point theory. By comparing the stability region with instantaneous capture points of different gait phases, the balancing characteristics of different gait phases and changes to the equilibrium state in the gait process are analyzed. Based on a model of the human-exoskeleton system and the condition of balance of different phases, a trajectory correction strategy is proposed for the instability of the human-exoskeleton system caused by forward leaning of the wearer’s upper body. Finally, the reliability of the trajectory correction strategy is verified by carrying out experiments on the Zhejiang University lower extremity exoskeleton. The proposed trajectory correction strategy can respond to forward leaning of the upper body in a timely manner. Additionally, in the process of the center of gravity transferred from a double-support phase to a single-support phase, the ratio of gait cycle to zero moment point transfer is reduced correspondingly, and the gait stability is improved.

基于捕获点理论的下肢步行康复外骨骼防跌倒步态规划

摘要:研究了在下肢康复外骨骼康复训练过程中穿戴者上半身向前倾斜导致的平衡问题。通过对人体-外骨骼系统建模并使用捕获点理论获取瞬时捕获点,将稳定区域与不同步态相的瞬时捕获点比较,分析不同步态相的平衡特性以及步态过程中平衡状态的变化。基于人体骨骼系统的模型和不同阶段的平衡条件,针对穿戴者上半身前倾导致人体骨骼系统的不稳定性,提出一种轨迹校正策略。最后,在浙江大学下肢外骨骼上实验,验证轨迹校正策略的可靠性。所提轨迹校正策略可及时响应上半身前倾,同时在重心从双支撑相转移到单支撑相的过程中,步态周期与零力矩点传递的比值相应减小,步态稳定性提高。

关键词:下肢机器人;捕获点;步态相位;人机系统平衡

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aphiratsakun N, Chairungsarpsook K, Parnichkun M, 2012. ZMP based gait generation of AIT leg exoskeleton—a further gaits generation. Adv Mater Res, 488-489:1026- 1031.

[2]Englsberger J, Ott C, Roa MA, et al., 2011. Bipedal walking control based on capture point dynamics. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4420-4427.

[3]Jatsun S, Savin S, Yatsun A, 2016. Motion control algorithm for a lower limb exoskeleton based on iterative LQR and ZMP method for trajectory generation. Int Workshop on Medical and Service Robots, p.305-317.

[4]Kawamoto H, Sankai Y, 2005. Power assist method based on phase sequence and muscle force condition for HAL. Adv Robot, 19(7):717-734.

[5]Koolen T, de Boer T, Rebula J, et al., 2012. Capturability- based analysis and control of legged locomotion, part 1: theory and application to three simple gait models. Int J Robot Res, 31(9):1094-1113.

[6]Kyeong S, Shin W, Yang M, et al., 2019. Recognition of walking environments and gait period by surface electromyography. Front Inform Technol Electron Eng, 20(3): 342-352.

[7]Li L, Hoon KH, Tow A, et al., 2015. Design and control of robotic exoskeleton with balance stabilizer mechanism. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.3817-3823.

[8]Lu YL, 2013. Research on Balance Control of Humanoid Robot’s Standing State. MS Thesis, Northeastern University, China (in Chinese).

[9]Masuya K, Sugihara T, 2015. COM motion estimation of a humanoid robot based on a fusion of dynamics and kinematics information. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.3975-3980.

[10]Parietti F, Chan KC, Hunter B, et al., 2016. Design and control of supernumerary robotic limbs for balance augmentation. IEEE Int Conf on Robotics and Automation, p.175-181.

[11]Pratt J, Carff J, Drakunov S, et al., 2006. Capture point: a step toward humanoid push recovery. 6th IEEE-RAS Int Conf on Humanoid Robots, p.1-8.

[12]Shafiee-Ashtiani M, Yousefi-Koma A, Shariat-Panahi M, et al., 2017. Push recovery of a humanoid robot based on model predictive control and capture point. 4th Int Conf on Robotics and Mechatronics, p.1-6.

[13]Strausser KA, Kazerooni H, 2011. The development and testing of a human machine interface for a mobile medical exoskeleton. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4911-4916.

[14]Vukobratović M, Stepanenko J, 1973. Mathematical models of general anthropomorphic systems. Math Bio-Sci, 17(3-4): 191-242.

[15]Wang DH, Lee KM, Ji JJ, 2016. A passive gait-based weight- support lower extremity exoskeleton with compliant joints. IEEE Trans Robot, 32(4):933-942.

[16]Wang SQ, Wang LT, Meijneke C, et al., 2015. Design and control of the MINDWALKER exoskeleton. IEEE Trans Neur Syst Rehabil Eng, 23(2):277-286.

[17]Yang CJ, Wei QX, Wu X, et al., 2018. Physical extraction and feature fusion for multi-mode signals in a measurement system for patients in rehabilitation exoskeleton. Sensors, 18(8):2588.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE