CLC number: TN82
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-02-09
Cited: 0
Clicked: 6380
Citations: Bibtex RefMan EndNote GB/T7714
Qingyi Guo, Hang Wong. A dual-polarized Fabry–Pérot antenna with high gain and wide bandwidth for millimeter-wave applications[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 599-608.
@article{title="A dual-polarized Fabry–Pérot antenna with high gain and wide bandwidth for millimeter-wave applications",
author="Qingyi Guo, Hang Wong",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="599-608",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000514"
}
%0 Journal Article
%T A dual-polarized Fabry–Pérot antenna with high gain and wide bandwidth for millimeter-wave applications
%A Qingyi Guo
%A Hang Wong
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 599-608
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000514
TY - JOUR
T1 - A dual-polarized Fabry–Pérot antenna with high gain and wide bandwidth for millimeter-wave applications
A1 - Qingyi Guo
A1 - Hang Wong
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 599
EP - 608
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000514
Abstract: We introduce a dual-polarized (DP) fabry–pérot cavity (FPC) antenna operating at the millimeter-wave (mmWave) frequency band with high-gain and wideband characteristics. A DP feeding source and a partially reflective surface (PRS) integrated with a Fresnel zone lens are suggested to realize dual-polarization wave radiation over a wide impedance bandwidth. The feeding source provides vertical and horizontal polarizations while keeping high isolation between the two polarizations. PRS is used to realize Fabry cavity to produce a directive beam radiation. The integrated Fresnel zone rings are introduced for phase correction, leading to a significant gain enhancement for the antenna. For verification, a 60-GHz FPC antenna prototype with DP radiation is designed and fabricated with measurement results. It consists of a feeding source, a PRS integrated with a Fresnel zone lens, a quasi-curved reflector, and four three-dimensional printed supporters. The results illustrate that the peak gains of vertical and horizontal polarizations are 18.4 and 17.6 dBi, respectively. The impedance matching bandwidth for the two polarizations is 14%. The performance ensures that the proposed DP FPC antenna is a promising candidate for the fifth-generation wireless communication systems in the mmWave band.
[1]Abbou D, Vuong TP, Touhami R, et al., 2017. High-gain wideband partially reflecting surface antenna for 60 GHz systems. IEEE Antenn Wirel Propag Lett, 16:2704-2707.
[2]Akbari M, Gupta S, Farahani M, et al., 2016. Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications. IEEE Trans Antenn Propag, 64(12):5542-5546.
[3]Attia H, Abdelghani ML, Denidni TA, 2017. Wideband and high-gain millimeter-wave antenna based on FSS Fabry–Perot cavity. IEEE Trans Antenn Propag, 65(10):5589-5594.
[4]Bai X, Qu SW, Yang SW, et al., 2016. Millimeter-wave circularly polarized tapered-elliptical cavity antenna with wide axial-ratio beamwidth. IEEE Trans Antenn Propag, 64(2):811-814.
[5]Chantalat R, Menudier C, Thevenot M, et al., 2008. Enhanced EBG resonator antenna as feed of a reflector antenna in the Ka band. IEEE Antenn Wirel Propag Lett, 7:349-353.
[6]Gardelli R, Albani M, Capolino F, 2006. Array thinning by using antennas in a Fabry–Perot cavity for gain enhancement. IEEE Trans Antenn Propag, 54(7):1979-1990.
[7]Hamid M, Mojgan D, Pedram M, 2011. A dual-band high-gain resonator antenna with orthogonal polarizations. IEEE Antenn Wirel Propag Lett, 10:1220-1223.
[8]Hosseini A, Capolino F, de Flaviis F, 2015a. Gain enhancement of a V-band antenna using a Fabry-Pérot cavity with a self-sustained all-metal cap with FSS. IEEE Trans Antenn Propag, 63(3):909-921.
[9]Hosseini A, de Flaviis F, Capolino F, 2015b. A 60 GHz simple-to-fabricate single-layer planar Fabry–Pérot cavity antenna. IET Microw Antenn Propag, 9(4):313-318.
[10]Imbert M, Papió A, de Flaviis F, et al., 2015. Design and performance evaluation of a dielectric flat lens antenna for millimeter-wave applications. IEEE Antenn Wirel Propag Lett, 14:342-345.
[11]Kaouach H, 2016. Design and characterization of circularly polarized discrete lens antennas in 60-GHz band. IEEE Antenn Wirel Propag Lett, 15:1200-1203.
[12]Karimkashi S, Kishk AA, 2011. Focusing properties of Fresnel zone plate lens antennas in the near-field region. IEEE Trans Antenn Propag, 59(5):1481-1487.
[13]Kramer O, Djerafi T, Wu K, 2011. Very small footprint 60 GHz stacked Yagi antenna array. IEEE Trans Antenn Propag, 59(9):3204-3210.
[14]Leger L, Monediere T, Jecko B, 2005. Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna. IEEE Microw Wirel Compon Lett, 15(9):573-575.
[15]Li MJ, Luk KM, 2015. Wideband magneto-electric dipole antenna for 60-GHz millimeter-wave communications. IEEE Trans Antenn Propag, 63(7):3276-3279.
[16]Moghadas H, Daneshmand M, Mousavi P, 2011. A dual-band high-gain resonant cavity antenna with orthogonal polarizations. IEEE Antenn Wirel Propag Lett, 10:1220-1223.
[17]Qin F, Gao SS, Luo Q, et al., 2016. A simple low-cost shared-aperture dual-band dual-polarized high-gain antenna for synthetic aperture radars. IEEE Trans Antenn Propag, 64(7):2914-2922.
[18]Qin PY, Ji LY, Chen SL, et al., 2018. Dual-polarized wideband Fabry–Perot antenna with quad-layer partially reflective surface. IEEE Antenn Wirel Propag Lett, 17(4):551-554.
[19]Sun GH, Wong H, 2020. A planar millimeter-wave antenna array with a pillbox-distributed network. IEEE Trans Antenn Propag, 68(5):3664-3672.
[20]Thors B, Colombi D, Ying ZN, et al., 2016. Exposure to RF EMF from array antennas in 5G mobile communication equipment. IEEE Access, 4:7469-7478.
[21]Vettikalladi H, Lafond O, Himdi M, 2009. High-efficient and high-gain superstrate antenna for 60-GHz indoor communication. IEEE Antenn Wirel Propag Lett, 8:1422-1425.
[22]Wu F, Luk KM, 2017. Wideband high-gain open resonator antenna using a spherically modified, second-order cavity. IEEE Trans Antenn Propag, 65(4):2112-2116.
[23]Xie P, Wang GM, Li HP, et al., 2017. A dual-polarized two-dimensional beam-steering Fabry–Pérot cavity antenna with a reconfigurable partially reflecting surface. IEEE Antenn Wirel Propag Lett, 16:2370-2374.
[24]Zheng YJ, Gao J, Zhou YL, et al., 2018. Wideband gain enhancement and RCS reduction of Fabry–Perot resonator antenna with chessboard arranged metamaterial superstrate. IEEE Trans Antenn Propag, 66(2):590-599.
[25]Zhu JF, Liao SW, Yang Y, et al., 2018. 60 GHz dual-circularly polarized planar aperture antenna and array. IEEE Trans Antenn Propag, 66(2):1014-1019.
[26]Zhu Q, Ng KB, Chan CH, 2017. Printed circularly polarized spiral antenna array for millimeter-wave applications. IEEE Trans Antenn Propag, 65(2):636-643.
Open peer comments: Debate/Discuss/Question/Opinion
<1>