Full Text:   <4654>

Summary:  <1842>

CLC number: TN82

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-02-09

Cited: 0

Clicked: 6380

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qingyi Guo

https://orcid.org/0000-0001-5546-6471

Hang Wong

https://orcid.org/0000-0002-4009-7009

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.4 P.599-608

http://doi.org/10.1631/FITEE.2000514


A dual-polarized Fabry–Pérot antenna with high gain and wide bandwidth for millimeter-wave applications


Author(s):  Qingyi Guo, Hang Wong

Affiliation(s):  State Key Laboratory of Terahertz and Millimeter Waves, Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China

Corresponding email(s):   guo_qingyi@163.com, hang.wong@cityu.edu.hk

Key Words:  Dual polarized, Fabry–, Pé, rot cavity antenna, Partially reflective surface integrated with Fresnel zone lens, Millimeter-wave band, High-gain, Wideband


Qingyi Guo, Hang Wong. A dual-polarized Fabry–Pérot antenna with high gain and wide bandwidth for millimeter-wave applications[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 599-608.

@article{title="A dual-polarized Fabry–Pérot antenna with high gain and wide bandwidth for millimeter-wave applications",
author="Qingyi Guo, Hang Wong",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="599-608",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000514"
}

%0 Journal Article
%T A dual-polarized Fabry–Pérot antenna with high gain and wide bandwidth for millimeter-wave applications
%A Qingyi Guo
%A Hang Wong
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 599-608
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000514

TY - JOUR
T1 - A dual-polarized Fabry–Pérot antenna with high gain and wide bandwidth for millimeter-wave applications
A1 - Qingyi Guo
A1 - Hang Wong
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 599
EP - 608
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000514


Abstract: 
We introduce a dual-polarized (DP) fabry–rot cavity (FPC) antenna operating at the millimeter-wave (mmWave) frequency band with high-gain and wideband characteristics. A DP feeding source and a partially reflective surface (PRS) integrated with a Fresnel zone lens are suggested to realize dual-polarization wave radiation over a wide impedance bandwidth. The feeding source provides vertical and horizontal polarizations while keeping high isolation between the two polarizations. PRS is used to realize Fabry cavity to produce a directive beam radiation. The integrated Fresnel zone rings are introduced for phase correction, leading to a significant gain enhancement for the antenna. For verification, a 60-GHz FPC antenna prototype with DP radiation is designed and fabricated with measurement results. It consists of a feeding source, a PRS integrated with a Fresnel zone lens, a quasi-curved reflector, and four three-dimensional printed supporters. The results illustrate that the peak gains of vertical and horizontal polarizations are 18.4 and 17.6 dBi, respectively. The impedance matching bandwidth for the two polarizations is 14%. The performance ensures that the proposed DP FPC antenna is a promising candidate for the fifth-generation wireless communication systems in the mmWave band.

一种高增益、宽频带的毫米波双极化法布里-佩罗天线

郭庆毅,黄衡
香港城市大学毫米波太赫兹国家重点实验室,中国香港,999077
摘要:随着毫米波无线通信技术日趋成熟,以及2019年世界无线电大会(WRC-19)正式将37–43.5 GHz,47.2–48.2 GHz和66–71 GHz等频段用于国际移动通信(IMT),毫米波通信系统近期将陆续在世界范围内开展大规模商用部署。毫米波存在路径损耗大等不利的传播特性。宽带高增益毫米波天线作为通信传播和电子设备之间的接口,为补偿通信系统的路径损耗、提高数据传输提供了保障。基于部分反射表面的法布里-佩罗天线凭借其结构简单、剖面低、成本低、增益高的特点,在高频段的应用中拥有更高的灵活度和潜力。本文提出一种高增益、宽频带的毫米波双极化法布里-佩罗天线,采用宽带的双极化馈源、近似椭圆抛物面的反射地板以及全对称的集成菲涅尔环的单层部分反射表面,实现了宽带高增益的双极化毫米波法布里-佩罗天线设计,为毫米波天线应用和未来通信系统以及通信方案的创新奠定基础。
所提出的天线结构由宽带双极化馈电源、准抛物面反射面和集成菲涅尔环的部分反射表面组成。宽带馈电源是一个3层介质层结构,具有垂直极化和水平极化的2个馈电端口,其辐射器是一个电磁偶极子。此馈电源采用磁电偶极子的辐射体结构实现宽带的特性,通过十字形馈电缝隙提高两个极化之间的极化隔离度,形成宽带高隔离度的毫米波双极化馈电源。设计了准抛物面的反射地板以形成法布里-佩罗腔体,从而激励多模高斯模式,实现整个腔体的宽带化。最后,采用菲涅尔环集成的部分反射表面,完成对电磁波的相位调控,实现天线的高增益特性。
为验证上述设计方法和理念,对所设计的天线进行加工制造以及测量。测试结果表明,此天线的垂直极化和水平极化的峰值增益分别为18.4和17.6 dBi,两种极化的阻抗匹配带宽为14%。此外,两种极化的隔离度高达40 dB,有效避免了两个端口能量的串扰。这些性能确保所提出的双极化法布里-佩罗天线能有效应用于毫米波频段无线通信系统。

关键词:双极化;法布里-珀罗腔天线;与菲涅耳带透镜集成的部分反射面;毫米波波段;高增益;宽带

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abbou D, Vuong TP, Touhami R, et al., 2017. High-gain wideband partially reflecting surface antenna for 60 GHz systems. IEEE Antenn Wirel Propag Lett, 16:2704-2707.

[2]Akbari M, Gupta S, Farahani M, et al., 2016. Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications. IEEE Trans Antenn Propag, 64(12):5542-5546.

[3]Attia H, Abdelghani ML, Denidni TA, 2017. Wideband and high-gain millimeter-wave antenna based on FSS Fabry–Perot cavity. IEEE Trans Antenn Propag, 65(10):5589-5594.

[4]Bai X, Qu SW, Yang SW, et al., 2016. Millimeter-wave circularly polarized tapered-elliptical cavity antenna with wide axial-ratio beamwidth. IEEE Trans Antenn Propag, 64(2):811-814.

[5]Chantalat R, Menudier C, Thevenot M, et al., 2008. Enhanced EBG resonator antenna as feed of a reflector antenna in the Ka band. IEEE Antenn Wirel Propag Lett, 7:349-353.

[6]Gardelli R, Albani M, Capolino F, 2006. Array thinning by using antennas in a Fabry–Perot cavity for gain enhancement. IEEE Trans Antenn Propag, 54(7):1979-1990.

[7]Hamid M, Mojgan D, Pedram M, 2011. A dual-band high-gain resonator antenna with orthogonal polarizations. IEEE Antenn Wirel Propag Lett, 10:1220-1223.

[8]Hosseini A, Capolino F, de Flaviis F, 2015a. Gain enhancement of a V-band antenna using a Fabry-Pérot cavity with a self-sustained all-metal cap with FSS. IEEE Trans Antenn Propag, 63(3):909-921.

[9]Hosseini A, de Flaviis F, Capolino F, 2015b. A 60 GHz simple-to-fabricate single-layer planar Fabry–Pérot cavity antenna. IET Microw Antenn Propag, 9(4):313-318.

[10]Imbert M, Papió A, de Flaviis F, et al., 2015. Design and performance evaluation of a dielectric flat lens antenna for millimeter-wave applications. IEEE Antenn Wirel Propag Lett, 14:342-345.

[11]Kaouach H, 2016. Design and characterization of circularly polarized discrete lens antennas in 60-GHz band. IEEE Antenn Wirel Propag Lett, 15:1200-1203.

[12]Karimkashi S, Kishk AA, 2011. Focusing properties of Fresnel zone plate lens antennas in the near-field region. IEEE Trans Antenn Propag, 59(5):1481-1487.

[13]Kramer O, Djerafi T, Wu K, 2011. Very small footprint 60 GHz stacked Yagi antenna array. IEEE Trans Antenn Propag, 59(9):3204-3210.

[14]Leger L, Monediere T, Jecko B, 2005. Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna. IEEE Microw Wirel Compon Lett, 15(9):573-575.

[15]Li MJ, Luk KM, 2015. Wideband magneto-electric dipole antenna for 60-GHz millimeter-wave communications. IEEE Trans Antenn Propag, 63(7):3276-3279.

[16]Moghadas H, Daneshmand M, Mousavi P, 2011. A dual-band high-gain resonant cavity antenna with orthogonal polarizations. IEEE Antenn Wirel Propag Lett, 10:1220-1223.

[17]Qin F, Gao SS, Luo Q, et al., 2016. A simple low-cost shared-aperture dual-band dual-polarized high-gain antenna for synthetic aperture radars. IEEE Trans Antenn Propag, 64(7):2914-2922.

[18]Qin PY, Ji LY, Chen SL, et al., 2018. Dual-polarized wideband Fabry–Perot antenna with quad-layer partially reflective surface. IEEE Antenn Wirel Propag Lett, 17(4):551-554.

[19]Sun GH, Wong H, 2020. A planar millimeter-wave antenna array with a pillbox-distributed network. IEEE Trans Antenn Propag, 68(5):3664-3672.

[20]Thors B, Colombi D, Ying ZN, et al., 2016. Exposure to RF EMF from array antennas in 5G mobile communication equipment. IEEE Access, 4:7469-7478.

[21]Vettikalladi H, Lafond O, Himdi M, 2009. High-efficient and high-gain superstrate antenna for 60-GHz indoor communication. IEEE Antenn Wirel Propag Lett, 8:1422-1425.

[22]Wu F, Luk KM, 2017. Wideband high-gain open resonator antenna using a spherically modified, second-order cavity. IEEE Trans Antenn Propag, 65(4):2112-2116.

[23]Xie P, Wang GM, Li HP, et al., 2017. A dual-polarized two-dimensional beam-steering Fabry–Pérot cavity antenna with a reconfigurable partially reflecting surface. IEEE Antenn Wirel Propag Lett, 16:2370-2374.

[24]Zheng YJ, Gao J, Zhou YL, et al., 2018. Wideband gain enhancement and RCS reduction of Fabry–Perot resonator antenna with chessboard arranged metamaterial superstrate. IEEE Trans Antenn Propag, 66(2):590-599.

[25]Zhu JF, Liao SW, Yang Y, et al., 2018. 60 GHz dual-circularly polarized planar aperture antenna and array. IEEE Trans Antenn Propag, 66(2):1014-1019.

[26]Zhu Q, Ng KB, Chan CH, 2017. Printed circularly polarized spiral antenna array for millimeter-wave applications. IEEE Trans Antenn Propag, 65(2):636-643.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE