Full Text:   <3915>

Summary:  <435>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-09-29

Cited: 0

Clicked: 3599

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kuo ZHANG

https://orcid.org/0000-0003-1901-9951

Jianliang HUO

https://orcid.org/0000-0002-0526-8087

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.4 P.542-554

http://doi.org/10.1631/FITEE.2000733


Damage quantitative assessment of spacecraft in a large-size inspection


Author(s):  Kuo ZHANG, Jianliang HUO, Shengzhe WANG, Xiao ZHANG, Yiting FENG

Affiliation(s):  School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; more

Corresponding email(s):   huoliaang@163.com

Key Words:  Hypervelocity impact, Damage information extraction, Image mosaicking, Damage localization, Quantitative assessment


Kuo ZHANG, Jianliang HUO, Shengzhe WANG, Xiao ZHANG, Yiting FENG. Damage quantitative assessment of spacecraft in a large-size inspection[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(4): 542-554.

@article{title="Damage quantitative assessment of spacecraft in a large-size inspection",
author="Kuo ZHANG, Jianliang HUO, Shengzhe WANG, Xiao ZHANG, Yiting FENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="4",
pages="542-554",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000733"
}

%0 Journal Article
%T Damage quantitative assessment of spacecraft in a large-size inspection
%A Kuo ZHANG
%A Jianliang HUO
%A Shengzhe WANG
%A Xiao ZHANG
%A Yiting FENG
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 4
%P 542-554
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000733

TY - JOUR
T1 - Damage quantitative assessment of spacecraft in a large-size inspection
A1 - Kuo ZHANG
A1 - Jianliang HUO
A1 - Shengzhe WANG
A1 - Xiao ZHANG
A1 - Yiting FENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 4
SP - 542
EP - 554
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000733


Abstract: 
To ensure the safety and reliability of spacecraft during multiple space missions, it is necessary to conduct in-situ nondestructive detection of the spacecraft to judge the damage caused by the hypervelocity impact of micrometeoroids and orbital debris (MMOD). In this paper, we propose an innovative quantitative assessment method based on damage reconstructed image mosaic technology. First, a Gaussian mixture model clustering algorithm is applied to extract images that highlight damage characteristics. Then, a mosaicking scheme based on the ORB feature extraction algorithm and an improved M-estimator SAmple Consensus (MSAC) algorithm with an adaptive threshold selection method is proposed which can create large-scale mosaicked images for damage detection. Eventually, to create the mosaicked images, the damage characteristic regions are segmented and extracted. The location of the damage area is determined and the degree of damage is judged by calculating the centroid position and the perimeter quantitative parameters. The efficiency and applicability of the proposed method are verified by the experimental results.

大尺寸检查中航天器损伤定量评估

张阔1,霍建亮2,王升哲2,张枭2,冯怡婷1
1电子科技大学自动化工程学院,中国成都市,611731
2西南技术物理研究所,中国成都市,610041
摘要:为保证航天器在多次航天任务中的安全性和可靠性,需要对航天器进行原位无损检测,判断微流星体和轨道碎片超高速撞击造成的损伤。本文提出一种创新的基于损伤重建图像拼接技术的定量损伤评估方法。首先,应用高斯混合模型聚类算法提取损伤特征突出的图像。然后,提出基于ORB特征提取算法和改进的具有自适应阈值选择的估计样本一致性(MSAC)算法的图像拼接方法,可创建用于损伤检测的大规模拼接图像。最后,对损伤特征区域进行分割和提取,生成拼接图像。通过计算质心位置和周长定量参数确定损伤区域的位置并判断损伤程度。实验结果验证了所提方法的有效性和适用性。

关键词:超高速撞击;损伤信息提取;图像拼接;损伤定位;定量评估

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adushkin V, Aksenov OY, Veniaminov S, et al., 2020. The small orbital debris population and its impact on space activities and ecological safety. Acta Astronaut, 176:591-597.

[2]Arnold J, Christiansen EL, Davis A, et al., 2009. Handbook for Designing MMOD Protection. Technical Report No. JSC-64399, Version A, National Aeronautics and Space Administration, Texas, USA.

[3]Bay H, Ess A, Tuytelaars T, et al., 2008. Speeded-up robust features (SURF). Comput Vis Image Underst, 110(3):346-359.

[4]Chandrakanth T, Sandhya B, 2015. Quality assessment of images using SSIM metric and CIEDE2000 distance methods in Lab color space. Proc 3rd Int Conf on Frontiers of Intelligent Computing: Theory and Applications, p.457-464.

[5]Chen XR, Wang MN, Song ZJ, 2015. Global optimization surface-based registration for image-to-patient registration using Gaussian mixture model. J Med Imag Health Inform, 5(8):1870-1874.

[6]Cheng YH, Tian LL, Yin C, et al., 2018. Research on crack detection applications of improved PCNN algorithm in moi nondestructive test method. Neurocomputing, 277:249-259.

[7]Dua G, Arora V, Mulaveesala R, 2021. Defect detection capabilities of pulse compression based infrared non-destructive testing and evaluation. IEEE Sens J, 21(6):7940-7947.

[8]Fida E, Baber J, Bakhtyar M, et al., 2017. Unsupervised image segmentation using Lab color space. Proc Intelligent Systems Conf, p.774-778.

[9]Gao B, Bai LB, Woo WL, et al., 2014. Automatic defect identification of eddy current pulsed thermography using single channel blind source separation. IEEE Trans Instrum Meas, 63(4):913-922.

[10]Huang XG, Yin C, Dadras S, et al., 2018. Adaptive rapid defect identification in ECPT based on K-means and automatic segmentation algorithm. J Amb Intell Human Comput.

[11]Huang XG, Yin C, Ru HQ, et al., 2020. Hypervelocity impact damage behavior of B4C/Al composite for MMOD shielding application. Mater Des, 186:108323.

[12]Karnati S, Liou FF, 2020. Detection and tracking of melt pool in blown powder deposition through image processing of infrared camera data. In: Sergiyenko O, Flores-Fuentes W, Mercorelli P (Eds.), Machine Vision and Navigation. Springer, Cham, p.711-732.

[13]Kaur K, Mulaveesala R, 2020. Efficient selection of independent components for inspection of mild steel sample using infrared thermography. Electron Lett, 56(19):990-993.

[14]Khan AA, Vrabie V, Mars JI, et al., 2008. A source separation technique for processing of thermometric data from fiber-optic DTS measurements for water leakage identification in dikes. IEEE Sens J, 8(7):1118-1129.

[15]Lamb H, 2018. Space agencies turn focus on small space debris. Eng Technol, 13(1):48-49.

[16]Laraqui A, Saaidi A, Satori K, 2018. MSIP: multi-scale image pre-processing method applied in image mosaic. Multimed Tools Appl, 77(6):7517-7537.

[17]Li Y, Ming AB, Mao H, et al., 2019. Detection and characterization of mechanical impact damage within multi-layer carbon fiber reinforced polymer (CFRP) laminate using passive thermography. IEEE Access, 7:27689-27698.

[18]Liang T, Ren WW, Tian GY, et al., 2016. Low energy impact damage detection in CFRP using eddy current pulsed thermography. Compos Struct, 143:352-361.

[19]Lowe DG, 2004. Distinctive image features from scale-invariant keypoints. Int J Comput Vis, 60(2):91-110.

[20]Magri L, Fusiello A, 2017. Multiple structure recovery via robust preference analysis. Image Vis Comput, 67:1-15.

[21]Qiu L, Fang F, Yuan SF, 2019. Improved density peak clustering-based adaptive Gaussian mixture model for damage monitoring in aircraft structures under time-varying conditions. Mech Syst Signal Process, 126:281-304.

[22]Rajic N, 2002. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos Struct, 58(4):521-528.

[23]Richter F, Ries CX, Romberg S, et al., 2014. Partial contour matching for document pieces with content-based prior. Proc IEEE Int Conf on Multimedia and Expo, p.1-6.

[24]Rublee E, Rabaud V, Konolige K, et al., 2011. ORB: an efficient alternative to SIFT or SURF. Proc Int Conf on Computer Vision, p.2564-2571.

[25]Smurov IY, Dubenskaya MA, Zhirnov IV, et al., 2016. Determination of the true temperature during selective laser melting of metal powders based on measurements with an infrared camera. Meas Technol, 59(9):971-974.

[26]Surya Kumari D, Bhavani SA, 2017. A new iterative hybrid edge technique using image mosaic. In: Satapathy SC, Bhateja V, RajuK S, et al. (Eds.), Computer Communication, Networking and Internet Security. Springer, Singapore, p.235-243.

[27]Yin C, Xue T, Huang XG, et al., 2019. Research on damages evaluation method with multi-objective feature extraction optimization scheme for M/OD impact risk assessment. IEEE Access, 7:98530-98545.

[28]Yin C, Huang XG, Cao JW, et al., 2021. Infrared feature extraction and prediction method based on dynamic multi-objective optimization for space debris impact damages inspection. J Franklin Inst, 358(18):10165-10192.

[29]Zhang HN, Huang XG, Yin C, et al., 2020. Design of hypervelocity-impact damage evaluation technique based on Bayesian classifier of transient temperature attributes. IEEE Access, 8:18703-18715.

[30]Zhang WP, Li XJ, Yu JF, et al., 2018. Remote sensing image mosaic technology based on SURF algorithm in agriculture. EURASIP J Image Video Process, 2018:85.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE