CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-09-14
Cited: 0
Clicked: 5092
Citations: Bibtex RefMan EndNote GB/T7714
Tian DANG, Chenxi LIU, Xiqing LIU, Shi YAN. Joint uplink and downlink resource allocation for low-latency mobile virtual reality delivery in fog radio access networks[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(1): 73-85.
@article{title="Joint uplink and downlink resource allocation for low-latency mobile virtual reality delivery in fog radio access networks",
author="Tian DANG, Chenxi LIU, Xiqing LIU, Shi YAN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="1",
pages="73-85",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100308"
}
%0 Journal Article
%T Joint uplink and downlink resource allocation for low-latency mobile virtual reality delivery in fog radio access networks
%A Tian DANG
%A Chenxi LIU
%A Xiqing LIU
%A Shi YAN
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 1
%P 73-85
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100308
TY - JOUR
T1 - Joint uplink and downlink resource allocation for low-latency mobile virtual reality delivery in fog radio access networks
A1 - Tian DANG
A1 - Chenxi LIU
A1 - Xiqing LIU
A1 - Shi YAN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 1
SP - 73
EP - 85
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100308
Abstract: Fog radio access networks (F-RANs), in which the fog access points are equipped with communication, caching, and computing functionalities, have been anticipated as a promising architecture for enabling virtual reality (VR) applications in wireless networks. Although extensive research efforts have been devoted to designing efficient resource allocation strategies for realizing successful mobile VR delivery in downlink, the equally important resource allocation problem of mobile VR delivery in uplink has so far drawn little attention. In this work, we investigate a mobile VR F-RAN delivery framework, where both the uplink and downlink transmissions are considered. We first characterize the round-trip latency of the system, which reveals its dependence on the communication, caching, and computation resource allocations. Based on this information, we propose a simple yet efficient algorithm to minimize the round-trip latency, while satisfying the practical constraints on caching, computation capability, and transmission capacity in the uplink and downlink. Numerical results show that our proposed algorithm can effectively reduce the round-trip latency compared with various baselines, and the impacts of communication, caching, and computing resources on latency performance are illustrated.
[1]Bastug E, Bennis M, Medard M, et al., 2017. Toward interconnected virtual reality: opportunities, challenges, and enablers. IEEE Commun Mag, 55(6):110-117. doi: 10.1109/MCOM.2017.1601089
[2]Boyd S, Mattingley J, 2018. Branch and Bound Methods. Stanford University, Stanford, USA.
[3]Chen MZ, Semiari O, Saad W, et al., 2020. Federated echo state learning for minimizing breaks in presence in wireless virtual reality networks. IEEE Trans Wirel Commun, 19(1):177-191. doi: 10.1109/TWC.2019.2942929
[4]Chiu TC, Pang AC, Chung WH, et al., 2019. Latency-driven fog cooperation approach in fog radio access networks. IEEE Trans Serv Comput, 12(5):698-711. doi: 10.1109/TSC.2018.2858253
[5]Cisco System, 2019. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2020. White Paper.
[6]Dai JM, Zhang ZL, Mao SW, et al., 2020. A view synthesis-based 360° VR caching system over MEC-enabled C-RAN. IEEE Trans Circ Syst Video Technol, 30(10):3843-3855. doi: 10.1109/TCSVT.2019.2946755
[7]Dang T, Peng MG, 2019. Joint radio communication, caching, and computing design for mobile virtual reality delivery in fog radio access networks. IEEE J Sel Areas Commun, 37(7):1594-1607. doi: 10.1109/JSAC.2019.2916486
[8]Du JB, Yu FR, Lu GY, et al., 2020. MEC-assisted immersive VR video streaming over terahertz wireless networks: a deep reinforcement learning approach. IEEE Int Things J, 7(10):9517-9529. doi: 10.1109/JIOT.2020.3003449
[9]Hu FH, Deng YS, Saad W, et al., 2020. Cellular-connected wireless virtual reality: requirements, challenges, and solutions. IEEE Commun Mag, 58(5):105-111. doi: 10.1109/MCOM.001.1900511
[10]Huang HC, Liu B, Chen L, et al., 2018. D2D-assisted VR video pre-caching strategy. IEEE Access, 6: 61886-61895. doi: 10.1109/ACCESS.2018.2868766
[11]Liu YM, Yu FR, Li X, et al., 2018. Distributed resource allocation and computation offloading in fog and cloud networks with non-orthogonal multiple access. IEEE Trans Veh Technol, 67(12):12137-12151. doi: 10.1109/TVT.2018.2872912
[12]Nelder JA, Mead R, 1965. A simplex method for function minimization. Comput J, 7(4):308-313. doi: 10.1093/comjnl/7.4.308
[13]Park J, Popovski P, Simeone O, 2018. Minimizing latency to support VR social interactions over wireless cellular systems via bandwidth allocation. IEEE Wirel Commun Lett, 7(5):776-779. doi: 10.1109/LWC.2018.2823761
[14]Park SH, Simeone O, Shitz SS, 2016. Joint optimization of cloud and edge processing for fog radio access networks. IEEE Trans Wirel Commun, 15(11):7621-7632. doi: 10.1109/TWC.2016.2605104
[15]Peng MG, Yan S, Zhang KC, et al., 2016. Fog-computing-based radio access networks: issues and challenges. IEEE Netw, 30(4):46-53. doi: 10.1109/MNET.2016.7513863
[16]Sun YP, Chen ZY, Tao MX, et al., 2019. Communications, caching, and computing for mobile virtual reality: modeling and tradeoff. IEEE Trans Commun, 67(11):7573-7586. doi: 10.1109/TCOMM.2019.2920594
[17]Yoshihara T, Fujita S, 2019. Fog-assisted virtual reality MMOG with ultra low latency. 7th Int Symp on Computing and Networking, p.121-129. doi: 10.1109/CANDAR.2019.00022
[18]You D, Doan TV, Torre R, et al., 2019. Fog computing as an enabler for immersive media: service scenarios and research opportunities. IEEE Access, 7:65797-65810. doi: 10.1109/ACCESS.2019.2917291
[19]Zhang P, Peng MG, Cui SG, et al., 2022. Theory and techniques for "intellicise" wireless networks. Front Inform Technol Electron Eng, 23(1):1-4. doi: 10.1631/FITEE.2210000
[20]Zhang Y, Jiao L, Yan JY, et al., 2019. Dynamic service placement for virtual reality group gaming on mobile edge cloudlets. IEEE J Sel Areas Commun, 37(8):1881-1897. doi: 10.1109/JSAC.2019.2927071
[21]Zhou Y, Pan CH, Yeoh PL, et al., 2021. Communication-and-computing latency minimization for UAV-enabled virtual reality delivery systems. IEEE Trans Commun, 69(3):1723-1735. doi: 10.1109/TCOMM.2020.3040283
[22]Zipf GK, 1929. Relative Frequency as a Determinant of Phonetic Change. PhD Thesis, Harvard University, Cambridge, USA.
Open peer comments: Debate/Discuss/Question/Opinion
<1>