Full Text:   <1664>

Summary:  <442>

CLC number: TP392

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-07-24

Cited: 0

Clicked: 1398

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao ZHANG

https://orcid.org/0000-0001-7680-1179

Mengyu LI

https://orcid.org/0000-0002-6640-2729

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.7 P.980-993

http://doi.org/10.1631/FITEE.2200496


MyWAL: performance optimization by removing redundant input/output stack in key-value store


Author(s):  Xiao ZHANG, Mengyu LI, Michael NGULUBE, Yonghao CHEN, Yiping ZHAO

Affiliation(s):  School of Computer Science, Northwestern Polytechnical University,Xi'an 710072,China; more

Corresponding email(s):   zhangxiao@nwpu.edu.cn, limy@mail.nwpu.edu.cn

Key Words:  Key-value (KV) store, Log-structured merge (LSM) tree, Non-volatile memory (NVM), Non-volatile memory express soild-state drive (NVMe SSD), Write-ahead log (WAL)


Xiao ZHANG, Mengyu LI, Michael NGULUBE, Yonghao CHEN, Yiping ZHAO. MyWAL: performance optimization by removing redundant input/output stack in key-value store[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(7): 980-993.

@article{title="MyWAL: performance optimization by removing redundant input/output stack in key-value store",
author="Xiao ZHANG, Mengyu LI, Michael NGULUBE, Yonghao CHEN, Yiping ZHAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="7",
pages="980-993",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200496"
}

%0 Journal Article
%T MyWAL: performance optimization by removing redundant input/output stack in key-value store
%A Xiao ZHANG
%A Mengyu LI
%A Michael NGULUBE
%A Yonghao CHEN
%A Yiping ZHAO
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 7
%P 980-993
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200496

TY - JOUR
T1 - MyWAL: performance optimization by removing redundant input/output stack in key-value store
A1 - Xiao ZHANG
A1 - Mengyu LI
A1 - Michael NGULUBE
A1 - Yonghao CHEN
A1 - Yiping ZHAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 7
SP - 980
EP - 993
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200496


Abstract: 
Based on a log-structured merge (LSM) tree, the key-value (KV) storage system can provide high reading performance and optimize random writing performance. It is widely used in modern data storage systems like e-commerce, online analytics, and real-time communication. An LSM tree stores new KV data in the memory and flushes to disk in batches. To prevent data loss in memory if there is an unexpected crash, RocksDB appends updating data in the write-ahead log (WAL) before updating the memory. However, synchronous WAL significantly reduces writing performance. In this paper, we present a new WAL mechanism named MyWAL. It directly manages raw devices (or partitions) instead of saving data on a traditional file system. These can avoid useless metadata updating and write data sequentially on disks. Experimental results show that MyWAL can significantly improve the data writing performance of RocksDB compared to the traditional WAL for small KV data on solid-state disks (SSDs), as much as five to eight times faster. On non-volatile memory express soild-state drives (NVMe SSDs) and non-volatile memory (NVM), MyWAL can improve data writing performance by 10%‍–‍30%. Furthermore, the results of YCSB (Yahoo! Cloud Serving Benchmark) show that the latency decreased by 50% compared with SpanDB.

MyWAL:一种基于精简输入输出堆栈的键值存储系统性能优化方案

张晓1,2,3,黎梦钰2,4,Michael NGULUBE1,2,陈泳豪1,2,赵一平1
1西北工业大学计算机学院,中国西安市,710072
2西北工业大学大数据存储与管理工信部重点实验室,中国西安市,710072
3西北工业大学空天地海一体化大数据应用技术国家工程实验室,中国西安市,710072
4西北工业大学软件学院,中国西安市,710072
摘要:基于日志结构合并(LSM)树的键值(KV)存储系统可优化随机写入性能,并提高读取性能,因此被广泛应用于电子商务、在线分析和实时通信等现代数据存储系统。日志结构合并树将变更的KV数据存在内存中,批量刷新至内存,优化了随机写入效率,但是在系统意外崩溃时会有数据丢失。为了避免内存中的数据丢失,RocksDB在更新内存之前,会将数据写入写前日志(WAL)中。但是开启同步WAL后系统的写入性能会受到较大的影响。在本文中,我们分析了利用本地文件系统保存WAL的一些缺陷,在此基础上提出了一种新的WAL机制,该机制根据WAL文件的特性直接管理原始设备(或分区),避免了无用的元数据更新,同时保证了数据顺序写入磁盘。实验结果表明,对于固态硬盘(SSD)SSD上的小KV数据,MyWAL可以将RocksDB的数据写入性能提高5到8倍。在NVMe SSD和非易失性存储器(NVM)上,MyWAL可以将数据写入性能提高10%-30%。此外,YCSB的结果表明,与SpanDB相比,写入延迟降低了50%。

关键词:键值(KV)存储;日志结构合并(LSM)树;非易失性存储器(NVM);NVMe SSD;写前日志(WAL)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Absalyamov I, Carey MJ, Tsotras VJ, 2018. Lightweight cardinality estimation in LSM-based systems. Proc Int Conf on Management of Data, p.841-855.

[2]Athanassoulis M, Chen SM, Ailamaki A, et al., 2011. MaSM: efficient online updates in data warehouses. Proc ACM SIGMOD Int Conf on Management of Data, p.865-876.

[3]Chen H, Ruan CY, Li C, et al., 2021. SpanDB: a fast, cost-effective LSM-tree based KV store on hybrid storage. 19th USENIX Conf on File and Storage Technologies, p.17-32.

[4]Dayan N, Idreos S, 2018. Dostoevsky: better space-time trade-offs for LSM-tree based key-value stores via adaptive removal of superfluous merging. Proc Int Conf on Management of Data, p.505-520.

[5]Dong SY, Kryczka A, Jin YQ, et al., 2021. Evolution of development priorities in key-value stores serving large-scale applications: the RocksDB experience. 19th USENIX Conf on File and Storage Technologies, p.33-49.

[6]Facebook, 2019. RocksDB, a persistent key-value store for fast storage environments. http://rocksdb.org/ [Accessed on Jan. 7, 2021].

[7]Izraelevitz J, Yang J, Zhang L, et al., 2019. Basic performance measurements of the Intel Optane DC persistent memory module. https://arxiv.org/abs/1903.05714

[8]Kaiyrakhmet O, Lee S, Nam B, et al., 2019. SLM-DB: single-level key-value store with persistent memory. 17th USENIX Conf on File and Storage Technologies, p.191-205.

[9]Kannan S, Bhat N, Gavrilovska A, et al., 2018. Redesigning LSMs for nonvolatile memory with NoveLSM. Proc USENIX Conf on Usenix Annual Technical Conf, p.993-1005.

[10]Leavitt N, 2010. Will NoSQL databases live up to their promise?Computer, 43(2):12-14.

[11]Lu LY, Pillai TS, Gopalakrishnan H, et al., 2017. WiscKey: separating keys from values in SSD-conscious storage. ACM Trans Stor, 13(1):5.

[12]Luo C, Carey MJ, 2019. Efficient data ingestion and query processing for LSM-based storage systems. Proc VLDB Endow, 12(5):531-543.

[13]Mei F, Cao Q, Jiang H, et al., 2018. SifrDB: a unified solution for write-optimized key-value stores in large datacenter. Proc ACM Symp on Cloud Computing, p.477-489.

[14]Pan FF, Yue YL, Xiong J, 2017. dCompaction: delayed compaction for the LSM-tree. Int J Parallel Prog, 45(6):1310-1325.

[15]Papagiannis A, Saloustros G, González-Férez P, et al., 2018. An efficient memory-mapped key-value store for flash storage. Proc ACM Symp on Cloud Computing, p.490-502.

[16]Qader MA, Cheng SW, Hristidis V, 2018. A comparative study of secondary indexing techniques in LSM-based NoSQL databases. Proc Int Conf on Management of Data, p.551-566.

[17]Raju P, Kadekodi R, Chidambaram V, et al., 2017. PebblesDB: building key-value stores using fragmented log-structured merge trees. Proc 26th Symp on Operating Systems Principles, p.497-514.

[18]Ren K, Zheng Q, Arulraj J, et al., 2017. SlimDB: a space-efficient key-value storage engine for semi-sorted data. Proc VLDB Endow, 10(13):2037-2048.

[19]Stonebraker M, 2010. SQL databases v. NoSQL databases. Commun ACM, 53(4):10-11.

[20]Teng DJ, Guo L, Lee R, et al., 2017. LSbM-tree: re-enabling buffer caching in data management for mixed reads and writes. IEEE 37th Int Conf on Distributed Computing Systems, p.68-79.

[21]Wu XB, Xu YH, Shao ZL, et al., 2015. LSM-trie: an LSM-tree-based ultra-large key-value store for small data items. USENIX Annual Technical Conf, p.71-82.

[22]Yao T, Wan JG, Huang P, et al., 2017. A light-weight compaction tree to reduce I/O amplification toward efficient key-value stores. Proc 33rd Int Conf on Massive Storage Systems and Technology, p.1-13.

[23]Yao T, Zhang YW, Wan JG, et al., 2020. MatrixKV: reducing write stalls and write amplification in LSM-tree based KV stores with a matrix container in NVM. Proc USENIX Conf on Usenix Annual Technical Conf, Article 2.

[24]Zhang YM, Li YK, Guo F, et al., 2018. ElasticBF: fine-grained and elastic bloom filter towards efficient read for LSM-tree-based KV stores. Proc 10th USENIX Conf on Hot Topics in Storage and File Systems, Article 11.

[25]Zhang ZG, Yue YL, He BS, et al., 2014. Pipelined compaction for the LSM-tree. IEEE 28th Int Parallel and Distributed Processing Symp, p.777-786.

[26]Zhu YC, Zhang Z, Cai P, et al., 2017. An efficient bulk loading approach of secondary index in distributed log-structured data stores. Proc 22nd Int Conf on Database Systems for Advanced Applications, p.87-102.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE