Full Text:   <4960>

Summary:  <320>

Suppl. Mater.: 

CLC number: U495; TP311.13

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-04-06

Cited: 0

Clicked: 1881

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhenyi XU

https://orcid.org/0000-0002-5804-882X

Yu KANG

https://orcid.org/0000-0002-8706-3252

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.11 P.1633-1646

http://doi.org/10.1631/FITEE.2300005


High-emitter identification for heavy-duty vehicles by temporal optimization LSTMand an adaptive dynamic threshold


Author(s):  Zhenyi XU, Renjun WANG, Yang CAO, Yu KANG

Affiliation(s):  Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; more

Corresponding email(s):   xuzhenyi@mail.ustc.edu.cn, kangduyu@ustc.edu.cn

Key Words:  High-emitter identification, Temporal optimization, On-board diagnostic device (OBD), Dynamic threshold


Zhenyi XU, Renjun WANG, Yang CAO, Yu KANG. High-emitter identification for heavy-duty vehicles by temporal optimization LSTMand an adaptive dynamic threshold[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(11): 1633-1646.

@article{title="High-emitter identification for heavy-duty vehicles by temporal optimization LSTMand an adaptive dynamic threshold",
author="Zhenyi XU, Renjun WANG, Yang CAO, Yu KANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="11",
pages="1633-1646",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300005"
}

%0 Journal Article
%T High-emitter identification for heavy-duty vehicles by temporal optimization LSTMand an adaptive dynamic threshold
%A Zhenyi XU
%A Renjun WANG
%A Yang CAO
%A Yu KANG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 11
%P 1633-1646
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300005

TY - JOUR
T1 - High-emitter identification for heavy-duty vehicles by temporal optimization LSTMand an adaptive dynamic threshold
A1 - Zhenyi XU
A1 - Renjun WANG
A1 - Yang CAO
A1 - Yu KANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 11
SP - 1633
EP - 1646
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300005


Abstract: 
Heavy-duty diesel vehicles are important sources of urban nitrogen oxides (NOx) in actual applications for environmental compliance, emitting more than 80% of NOx and more than 90% of particulate matter (PM) in total vehicle emissions. The detection and control of heavy-duty diesel emissions are critical for protecting public health. Currently, vehicles on the road must be regularly tested, every six months or once a year, to filter out high-emission mobile sources at vehicle inspection stations. However, it is difficult to effectively screen high-emission vehicles in time with a long interval between annual inspections, and the fixed threshold cannot adapt to the dynamic changes of vehicle driving conditions. An on-board diagnostic device (OBD) is installed inside the vehicle and can record the vehicle’s emission data in real time. In this paper, we propose a temporal optimization long short-term memory (LSTM) and adaptive dynamic threshold approach to identify heavy-duty high-emitters by using OBD data, which can continuously track and record the emission status in real time. First, a temporal optimization LSTM emission prediction model is established to solve the attention bias discrepancy problem on time steps that is caused by the large number of OBD data streams in practice. Then, the concentration prediction error sequence is detected and distinguished from the anomalous emission contexts using flexible criteria, calculated by an adaptive dynamic threshold with changing driving conditions. Finally, a similarity metric strategy for the time series is introduced to correct some pseudo anomalous results. Experiments on three real OBD time-series emission datasets demonstrate that our method can achieve high accuracy anomalous emission identification.

基于时序优化长短期记忆和自适应阈值的高排放重型柴油车识别

许镇义1,王仁军1,2,曹洋1,3,4,康宇1,3,4
1合肥综合性国家科学中心人工智能研究院,中国合肥市,230088
2安徽大学与合肥综合性国家科学中心人工智能研究院联合实验室,
中国合肥市,230601
3中国科学技术大学自动化系,中国合肥市,230027
4中国科学技术大学先进技术研究院,中国合肥市,230088
摘要:在实际场景中,重型柴油车是城市氮氧化物的重要来源,其排放的氮氧化物(NOx)占车辆总排放量的80%以上,颗粒物(PM)占90%以上。检测和控制重型柴油车的排放对保护公众健康至关重要。目前,道路上的车辆必须每6个月或每年定期检测一次,在车辆检查站过滤出高排放的移动源。然而,由于年检间隔时间较长,很难及时有效地筛选出高排放车辆,而且固定的阈值不能适应车辆驾驶工况的动态变化。车载诊断设备(OBD)安装在车辆内部,可以连续跟踪和实时记录排放数据。本文提出一种时间优化长短期记忆(LSTM)和自适应动态阈值方法,使用OBD数据识别重型高排放车辆。首先,建立一个时间优化LSTM排放预测模型,以解决实际中大量OBD数据流造成的时间步注意力偏重问题。然后,利用灵活的阈值标准检测浓度预测误差序列,以区分异常排放情况,该阈值随驾驶条件变化自适应计算得到。最后,引入时间序列的相似性度量策略,以纠正一些假的异常结果。在3个真实OBD时间序列排放数据集上的实验表明,该方法得到优异的高排放源识别结果。

关键词:高排放识别;时序优化;车载诊断设备(OBD);动态阈值

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chandola V, Banerjee A, Kumar V, 2009. Anomaly detection: a survey. ACM Comput Surv, 41(3):15.

[2]Cho K, van Merriënboer B, Gulcehre C, et al., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proc Conf on Empirical Methods in Natural Language Processing, p.1724-1734.

[3]Fang SW, Li Q, Karimian H, et al., 2022. DESA: a novel hybrid decomposing-ensemble and spatiotemporal attention model for PM2.5 forecasting. Environ Sci Poll Res, 29(36):54150-54166.

[4]Franco V, Kousoulidou M, Muntean M, et al., 2013. Road vehicle emission factors development: a review. Atmos Environ, 70:84-97.

[5]Guo HF, Zeng J, Hu YM, 2006. Neural network modeling of vehicle gross emitter prediction based on remote sensing data. Proc IEEE Int Conf on Networking, Sensing and Control, p.943-946.

[6]He ZY, Xu XF, Deng SC, 2003. Discovering cluster-based local outliers. Patt Recogn Lett, 24(9-10):1641-1650.

[7]Jiang MF, Tseng SS, Su CM, 2001. Two-phase clustering process for outliers detection. Patt Recogn Lett, 22(6-7):691-700.

[8]Karimian H, Li Q, Li CC, et al., 2019. Spatio-temporal variation of wind influence on distribution of fine particulate matter and its precursor gases. Atmos Poll Res, 10(1):53-64.

[9]Li YR, Zhu ZF, Kong DQ, et al., 2019. EA-LSTM: evolutionary attention-based LSTM for time series prediction. Knowl-Based Syst, 181:104785.

[10]Li ZR, Kang Y, Lv WJ, et al., 2021. High-emitter identification model establishment using weighted extreme learning machine and active sampling. Neurocomputing, 441:79-91.

[11]Liu FT, Ting KM, Zhou ZH, 2008. Isolation forest. Proc 8th IEEE Int Conf on Data Mining, p.413-422.

[12]Liu YQ, Gong CY, Yang L, et al., 2020. DSTP-RNN: a dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction. Expert Syst Appl, 143:113082.

[13]Lucas JM, Saccucci MS, 1990. Exponentially weighted moving average control schemes: properties and enhancements. Technometrics, 32(1):1-12.

[14]Lukashevich H, Nowak S, Dunker P, 2009. Using one-class SVM outliers detection for verification of collaboratively tagged image training sets. Proc IEEE Int Conf on Multimedia and Expo, p.682-685.

[15]Malhotra P, Vig L, Shroff GM, et al., 2015. Long short term memory networks for anomaly detection in time series. Proc 23rd European Symp on Artificial Neural Networks, Computational Intelligence and Machine Learning.

[16]McClintock PM, 2007. High Emitter Remote Sensing Project. Prepared for Southeast Michigan Council of Governments. http://refhub.elsevier.com/S1352-2310(18)30187-0/sref52 [Accessed on Mar. 29, 2022].

[17]McClintock PM, 2011. The Colorado Remote Sensing Program January–December 2010. The Colorado Department of Public Health and Environment. http://refhub.elsevier.com/S1352-2310(18)30187-0/sref80 [Accessed on Mar. 29, 2022].

[18]Ministry of Ecology and Environment of the People’s Republic of China, 2022. China Mobile Source Environmental Management Annual Report (in Chinese). https://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/202212/W020221207387013521948.pdf [Accessed on Mar. 29, 2022].

[19]Pujadas M, Domínguez-Sáez A, de la Fuente J, 2017. Real-driving emissions of circulating Spanish car fleet in 2015 using RSD technology. Sci Total Environ, 576:193-209.

[20]Senin P, 2008. Dynamic Time Warping Algorithm Review. University of Hawaii, Honolulu, USA.

[21]Shipmon DT, Gurevitch JM, Piselli PM, et al., 2017. Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data. https://arxiv.org/abs/1708.03665

[22]Smit R, Bluett J, 2011. A new method to compare vehicle emissions measured by remote sensing and laboratory testing: high-emitters and potential implications for emission inventories. Sci Total Environ, 409(13):2626-2634.

[23]Stephens RD, Cadle SH, Qian TZ, 1996. Analysis of remote sensing errors of omission and commission under FTP conditions. J Air Waste Manag Assoc, 46(6):510-516.

[24]Williamson DF, Parker RA, Kendrick JS, 1989. The box plot: a simple visual method to interpret data. Ann Int Med, 110(11):916-921.

[25]Wu CL, Li Q, Hou JX, et al., 2018. PM2.5 concentration prediction using convolutional neural networks. Sci Surv Map, 43(8):68-75 (in Chinese).

[26]Xie H, Zhang YJ, He Y, et al., 2019. Automatic and fast recognition of on-road high-emitting vehicles using an optical remote sensing system. Sensors, 19(16):3540.

[27]Xie H, Zhang YJ, He Y, et al., 2021. Parallel attention-based LSTM for building a prediction model of vehicle emissions using PEMS and OBD. Measurement, 185:110074.

[28]Xu XW, Yuruk N, Feng ZD, et al., 2007. SCAN: a structural clustering algorithm for networks. Proc 13th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.824-833.

[29]Xu ZY, Kang Y, Cao Y, et al., 2021. Spatiotemporal graph convolution multifusion network for urban vehicle emission prediction. IEEE Trans Neur Netw Learn Syst, 32(8):3342-3354.

[30]Yu Y, Si XS, Hu CH, et al., 2019. A review of recurrent neural networks: LSTM cells and network architectures. Neur Comput, 31(7):1235-1270.

[31]Zeng J, Guo HF, Hu YM, 2008. A PKGV-ANN model for vehicle high emitters identification based on remote sensing data. Proc 27th Chinese Control Conf, p.171-175.

[32]Zhang GP, 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50:159-175.

[33]Zhou HY, Zhang SH, Peng JQ, et al., 2021. Informer: beyond efficient transformer for long sequence time-series forecasting. Proc 35th AAAI Conf on Artificial Intelligence, p.11106-11115.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE