
CLC number: O43
On-line Access: 2025-06-04
Received: 2024-02-03
Revision Accepted: 2024-05-01
Crosschecked: 2025-09-04
Cited: 0
Clicked: 2252
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-3931-6884
https://orcid.org/0009-0001-2076-5997
Xinjie SUN, Xin HE, Zixin CAI, Xiang HAO. Single-layer chiral metasurface for circularly polarized light detection[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(8): 1454-1460.
@article{title="Single-layer chiral metasurface for circularly polarized light detection",
author="Xinjie SUN, Xin HE, Zixin CAI, Xiang HAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="8",
pages="1454-1460",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400081"
}
%0 Journal Article
%T Single-layer chiral metasurface for circularly polarized light detection
%A Xinjie SUN
%A Xin HE
%A Zixin CAI
%A Xiang HAO
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 8
%P 1454-1460
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400081
TY - JOUR
T1 - Single-layer chiral metasurface for circularly polarized light detection
A1 - Xinjie SUN
A1 - Xin HE
A1 - Zixin CAI
A1 - Xiang HAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 8
SP - 1454
EP - 1460
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400081
Abstract: Circular polarizers based on the metasurface suffer from a trade-off between the structural complexity and the polarization extinction ratio (ER). Herein, we present a single-layer chiral metasurface with strong circular dichroism. The structure turns a circularly polarized incident beam into a linearly polarized beam, achieving a high circular polarization ER. The operating wavelength of the proposed metasurface is tunable by changing the geometric parameters. The metasurface’s localized surface plasmon resonances between structures ensure strong chiral optical effects. We further experimentally demonstrate the circular dichroism of the fabricated metasurface.
[1]Bai J, Wang C, Chen XH, et al., 2019. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection. Photon Res, 7(9):1051-1060.
[2]Basiri A, Chen XH, Bai J, et al., 2019. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci Appl, 8:78.
[3]Cen MJ, Wang JW, Liu JX, et al., 2022. Ultrathin suspended chiral metasurfaces for enantiodiscrimination. Adv Mater, 34(37):2203956.
[4]Devlin RC, Khorasaninejad M, Chen WT, et al., 2016. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci USA, 113(38):10473-10478.
[5]Dietrich K, Lehr D, Helgert C, et al., 2012. Circular dichroism from chiral nanomaterial fabricated by on-edge lithography. Adv Mater, 24(44):321-325.
[6]Farshchi R, Ramsteiner M, Herfort J, et al., 2011. Optical communication of spin information between light emitting diodes. Appl Phys Lett, 98(16):162508.
[7]Frese D, Wei QS, Wang YT, et al., 2019. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces. Nano Lett, 19(6):3976-3980.
[8]Gansel JK, Wegener M, Burger S, et al., 2010. Gold helix photonic metamaterials: a numerical parameter study. Opt Expr, 18(2):1059-1069.
[9]Garcia NM, de Erausquin I, Edmiston C, et al., 2015. Surface normal reconstruction using circularly polarized light. Opt Expr, 23(11):14391-14406.
[10]Gorkunov MV, Antonov AA, Kivshar YS, 2020. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys Rev Lett, 125(9):093903.
[11]Hentschel M, Schäferling M, Duan XY, et al., 2017. Chiral plasmonics. Sci Adv, 3(5):1602735.
[12]Li W, Coppens ZJ, Besteiro LV, et al., 2015. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat Commun, 6:8379.
[13]Lin SS, Yemelyanov KM, Pugh EN, et al., 2004. Polarization enhanced visual surveillance techniques. IEEE Int Conf on Networking, Sensing and Control, p.216-221.
[14]Ma ZJ, Li Y, Li Y, et al., 2018. All-dielectric planar chiral metasurface with gradient geometric phase. Opt Expr, 26(5):6067-6078.
[15]Menzel C, Rockstuhl C, Lederer F, 2010. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A, 82(5):053811.
[16]Pendry JB, Schurig D, Smith DR, 2006. Controlling electromagnetic fields. Science, 312(5781):1780-1782.
[17]Rajaei M, Zeng JW, Albooyeh M, et al., 2019. Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures. ACS Photon, 6(4):924-931.
[18]Soukoulis CM, Wegener M, 2010. Optical metamaterials—more bulky and less lossy. Science, 330(6011):1633-1634.
[19]Wan WP, Yang WH, Ye S, et al., 2022. Tunable full-color vectorial meta-holography. Adv Opt Mater, 10(22):2201478.
[20]Wang Q, Plum E, Yang QL, et al., 2018. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci Appl, 7:25.
[21]Wang ZJ, Jia H, Yao K, et al., 2016. Circular dichroism metamirrors with near-perfect extinction. ACS Photon, 3(11):2096-2101.
[22]Yu NF, Genevet P, Kats MA, et al., 2011. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334(6054):333-337.
[23]Yun JG, Kim SJ, Yun H, et al., 2017. Broadband ultrathin circular polarizer at visible and near-infrared wavelengths using a non-resonant characteristic in helically stacked nano-gratings. Opt Expr, 25(13):14260-14269.
[24]Zhang F, Pu MB, Li X, et al., 2017. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv Funct Mater, 27(47):1704295.
[25]Zhao X, Li ZC, Cheng JQ, et al., 2022. Realization of maximum optical intrinsic chirality with bilayer polyatomic metasurfaces. Opt Lett, 47(18):4814-4817.
[26]Zhao Y, Belkin MA, Alù A, 2012. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun, 3:870.
Open peer comments: Debate/Discuss/Question/Opinion
<1>