Full Text:   <387>

Summary:  <169>

CLC number: TN929.5

On-line Access: 2025-03-07

Received: 2024-04-01

Revision Accepted: 2024-11-03

Crosschecked: 2025-03-07

Cited: 0

Clicked: 435

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chunjing YUAN

https://orcid.org/0000-0001-5490-971X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.2 P.230-245

http://doi.org/10.1631/FITEE.2400248


Service decoupling for open and intelligent service-based RAN


Author(s):  Chunjing YUAN, Tong LEI, Ze XUE, Lin TIAN, Shuyuan ZHANG, Na LI, Zhou TONG

Affiliation(s):  Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; more

Corresponding email(s):   yuanchunjing@ict.ac.cn, leit9@chinatelecom.cn, xueze22@mails.ucas.ac.cn, tianlindd@ict.ac.cn, zhangshuyuan@chinamobile.com, linawx@chinamobile.com, tongzhou@chinamobile.com

Key Words:  Service decoupling, Open and intelligent, Service-based radio access network (RAN), Graph theory, Full-service 6G network


Chunjing YUAN, Tong LEI, Ze XUE, Lin TIAN, Shuyuan ZHANG, Na LI, Zhou TONG. Service decoupling for open and intelligent service-based RAN[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(2): 230-245.

@article{title="Service decoupling for open and intelligent service-based RAN",
author="Chunjing YUAN, Tong LEI, Ze XUE, Lin TIAN, Shuyuan ZHANG, Na LI, Zhou TONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="2",
pages="230-245",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400248"
}

%0 Journal Article
%T Service decoupling for open and intelligent service-based RAN
%A Chunjing YUAN
%A Tong LEI
%A Ze XUE
%A Lin TIAN
%A Shuyuan ZHANG
%A Na LI
%A Zhou TONG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 2
%P 230-245
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400248

TY - JOUR
T1 - Service decoupling for open and intelligent service-based RAN
A1 - Chunjing YUAN
A1 - Tong LEI
A1 - Ze XUE
A1 - Lin TIAN
A1 - Shuyuan ZHANG
A1 - Na LI
A1 - Zhou TONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 2
SP - 230
EP - 245
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400248


Abstract: 
Task diversity is one of the biggest challenges for future sixth-generation (6G) networks. Taking the task as the center and driving the dynamic 6G radio access network (RAN) with artificial intelligence (AI) are necessary to accurately meet the personalized demands of users. However, AI can only configure the parameters of a monolithic RAN and cannot schedule the functions. The development trend of 6G RANs is to enhance dynamic capability and scheduling ease. In this paper, we propose a service-based RAN architecture that can deploy decoupled RAN functions and customize networks according to tasks. Protocol analysis shows that the interactive relationship between RAN control plane (CP) functions is complex and needs to be decoupled according to the principles of high cohesion and low coupling. Based on the graph theory rather than expert experience, we design a RAN decoupling scheme. The functional connection and interaction of the CP are represented by constructing an undirected weighted graph, followed by achieving decoupling of the CP through a minimum spanning tree. Then an integration decoupling scheme of a RAN-CN (core network) is introduced considering the duplicate and redundant functions of the RAN and CN. The granularity of decoupling in a service-based RAN is determined by analyzing the flexibility of decoupling, complexity of signaling, and processing delay. We find that it is more appropriate to decouple the RAN CP into four services. The integration decoupling of the RAN-CN resolves the technical bottleneck of low serial efficiency in the Ng interface, supporting AI-based global service scheduling.

面向开放和智能服务化RAN的服务解耦研究

袁春经1,雷桐2,薛泽1,田霖1,3,张书园4,李娜4,佟舟4
1中国科学院计算技术研究所,中国北京市,100190
2中国电信湖北智能云网调度运营中心,中国武汉市,430024
3中科南京信息高铁研究院,中国南京市,210008
4中国移动研究院未来研究院,中国北京市,100053
摘要:任务多样性是未来6G网络面临的最大挑战之一。以任务为中心,用人工智能(artificial intelligence,AI)驱动动态6G RAN(radio access network,无线接入网),精准满足用户的个性化需求。然而,人工智能只能配置单体式RAN的功能参数,无法对功能进行调度。因此,使RAN能力更具动态性和可调度性是6G RAN的发展趋势。本文提出一种基于服务的RAN架构,可以部署解耦的RAN功能,并根据任务进行定制。协议分析表明RAN CP(control plane)功能之间的交互关系复杂,需要按照高内聚低耦合的原则进行解耦。基于图论而非专家经验设计了一种RAN解耦方案。构建无向有权图表示功能连接和交互,通过最小生成树实现功能连接的解耦。考虑到RAN和CN功能的重复和冗余,提出一种RAN-CN集成解耦方案。分析解耦的灵活性、信令的复杂性和处理延迟,实验发现将RAN控制面解耦为4个服务更为合适。RAN-CN的集成解耦解决了Ng接口串行效率低的技术瓶颈,可实现全服务化6G,支持基于AI的全局功能调度。

关键词:服务解耦;开放智能;服务化RAN;图论;全服务化6G网络

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP, 2024. Study on NR Positioning Enhancements. TR 38.857, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3732 [Accessed on Mar. 25, 2024].

[2]6GANA, 2023a. User-Centric Friendly Network (UCFN)-Concept and Requirements (in Chinese). https://6g-ana.com/upload/file/20231214/6383817253930924492099378.‍pdf [Accessed on Mar. 25, 2024].

[3]6GANA, 2023b. White Paper on Task-Oriented Intelligent-Native RAN Architecture (in Chinese). https://6g-ana.com/upload/file/20231214/6383817250963162653165902.pdf [Accessed on Mar. 25, 2024].

[4]Cao HT, Du JB, Zhao HT, et al., 2022. Toward tailored resource allocation of slices in 6G networks with softwarization and virtualization. IEEE Int Things J, 9(9):6623-6637.

[5]Choi J, Sharma N, Gantha SS, et al., 2022. RAN-CN converged control-plane for 6G cellular networks. IEEE Global Communications Conf, p.1253-1258.

[6]Ding HY, Wang YF, Zheng XY, et al., 2023. Design and implementation of a service-based radio access network. IEEE 97th Vehicular Technology Conf, p.1-5.

[7]Du KL, Wang LH, Zhu ZS, et al., 2023. Converged service-based architecture for next-generation mobile communication networks. IEEE Wireless Communications and Networking Conf, p.1-6.

[8]He JH, Yang K, Chen HH, 2021. 6G cellular networks and connected autonomous vehicles. IEEE Netw, 35(4):255-261.

[9]Khan NA, Schmid S, 2024. AI-RAN in 6G networks: state-of-the-art and challenges. IEEE Open J Commun Soc, 5:294-311.

[10]Khaturia M, Sharma N, Choi J, et al., 2024. Service-based architecture evolution: towards enhanced signaling in beyond 5G/6G networks. IEEE Wireless Communications and Networking Conf, p.1-6.

[11]Li N, Liu GY, Zhang HM, et al., 2022. Service-based RAN: the next phase of cloud RAN. IEEE Globecom Workshops, p.1206-1211.

[12]O-RAN, 2023. O-RAN next Generation Research Group (nGRG) Research Report: O-RAN Towards 6G. https://mediastorage.o-ran.org/ngrg-rr/nGRG-RR-2023-01-O-RAN-Towards-6G-v1_3.pdf [Accessed on Mar. 20, 2024].

[13]Polese M, Bonati L, D’Oro S, et al., 2023. Understanding O-RAN: architecture, interfaces, algorithms, security, and research challenges. IEEE Commun Surv Tutor, 25(2):1376-1411.

[14]Polese M, Dohler M, Dressler F, et al., 2024. Empowering the 6G cellular architecture with open RAN. IEEE J Sel Areas Commun, 42(2):245-262.

[15]Puligheddu C, Ashdown J, Chiasserini CF, et al., 2023. SEM-O-RAN: semantic and flexible O-RAN slicing for NextG edge-assisted mobile systems. IEEE Conf on Computer Communications, p.1-10.

[16]Upadhyaya PS, Tripathi N, Gaeddert J, et al., 2023. Open AI cellular (OAIC): an open source 5G O-RAN testbed for design and testing of AI-based RAN management algorithms. IEEE Netw, 37(5):7-15.

[17]Uusitalo MA, Rugeland P, Boldi MR, et al., 2021. 6G vision, value, use cases and technologies from European 6G flagship project Hexa-X. IEEE Access, 9:160004-160020.

[18]Wang XY, Sun T, Duan XD, et al., 2022. Holistic service-based architecture for space-air-ground integrated network for 5G-advanced and beyond. China Commun, 19(1):14-28.

[19]Xu HS, Wu J, Li JH, et al., 2021. Deep-reinforcement-learning-based cybertwin architecture for 6G IIoT: an integrated design of control, communication, and computing. IEEE Int Things J, 8(22):16337-16348.

[20]Yan XQ, An XL, Ye WX, et al., 2023. User-centric network architecture design for 6G mobile communication systems. Joint European Conf on Networks and Communications & 6G Summit, p.305-310.

[21]Yang ZM, Hu DL, Guo Q, et al., 2023. Visual E2C: AI-driven visual end-edge-cloud architecture for 6G in low-carbon smart cities. IEEE Wirel Commun, 30(3):204-210.

[22]Zhang HM, Liu GY, Li N, et al., 2022. Performance analysis of service-based RAN via multi-state Markov chain. IEEE 8th Int Conf on Computer and Communications, p.1561-1565.

[23]Zhang X, Zhu QX, 2023. AI-enabled network-functions virtualization and software-defined architectures for customized statistical QoS over 6G massive MIMO mobile wireless networks. IEEE Netw, 37(2):30-37.

[24]Zong JY, Huang X, Liu HT, et al., 2023. Service-oriented wireless network architecture and edge network convergence design. IEEE Int Symp on Broadband Multimedia Systems and Broadcasting, p.1-5.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE