CLC number: TN82
On-line Access: 2025-01-24
Received: 2024-05-10
Revision Accepted: 2024-09-30
Crosschecked: 2025-01-24
Cited: 0
Clicked: 799
Citations: Bibtex RefMan EndNote GB/T7714
Xiaowei CAO, Changjiang DENG, Youjia YIN, Yinan HAO, Weidong HU, Zhewei FU, Zhiji DENG. Two-bit dual-polarized reconfigurable intelligent surface with low power consumption for 6G near-field communication[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(12): 1695-1707.
@article{title="Two-bit dual-polarized reconfigurable intelligent surface with low power consumption for 6G near-field communication",
author="Xiaowei CAO, Changjiang DENG, Youjia YIN, Yinan HAO, Weidong HU, Zhewei FU, Zhiji DENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="12",
pages="1695-1707",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400379"
}
%0 Journal Article
%T Two-bit dual-polarized reconfigurable intelligent surface with low power consumption for 6G near-field communication
%A Xiaowei CAO
%A Changjiang DENG
%A Youjia YIN
%A Yinan HAO
%A Weidong HU
%A Zhewei FU
%A Zhiji DENG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 12
%P 1695-1707
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400379
TY - JOUR
T1 - Two-bit dual-polarized reconfigurable intelligent surface with low power consumption for 6G near-field communication
A1 - Xiaowei CAO
A1 - Changjiang DENG
A1 - Youjia YIN
A1 - Yinan HAO
A1 - Weidong HU
A1 - Zhewei FU
A1 - Zhiji DENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 12
SP - 1695
EP - 1707
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400379
Abstract: near-field communication using large-scale antenna arrays is one of the hot research topics in the sixth-generation (6G) wireless communication. reconfigurable intelligent surface (RIS) is a cost-effective method for manipulating electromagnetic waves in the near field. We propose a 2-bit dual-polarized RIS that has the merits of low cost, low power consumption, high phase accuracy, and polarization diversity. Each element consists of an aperture-coupled microstrip patch, two single-pole-four-throw (SP4T) switches, and two groups of microstrip delay lines. Two-bit phase shift is achieved by using only one SP4T switch that controls the connection of four parallel delay branches. dual polarization is generated by placing two orthogonal slots with two 2-bit phase shifters. A 15×15 RIS prototype operating in the 3.6 GHz band is fabricated and measured. The beam can be scanned in the ±60° range, with a peak aperture efficiency of 40.1% for horizontal polarization and 38.3% for vertical polarization. What is more, the total power consumption of the RIS is merely about 100 mW, which is very attractive for massive deployment in 6G near-field communication.
[1]Alexandropoulos GC, Shlezinger N, Alamzadeh I, et al., 2024. Hybrid reconfigurable intelligent metasurfaces: enabling simultaneous tunable reflections and sensing for 6G wireless communications. IEEE Veh Technol Mag, 19(1):75-84.
[2]Dai LL, Wang BC, Wang M, et al., 2020. Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results. IEEE Access, 8:45913-45923.
[3]Dai ZY, Xu JR, Zeng Y, et al., 2024. Characterizing the rate region of active and passive communications with RIS-based cell-free symbiotic radio. IEEE Int Things J, 11(4):5653-5666.
[4]Dash S, Psomas C, Krikidis I, et al., 2022. Active control of THz waves in wireless environments using graphene-based RIS. IEEE Trans Antenn Propag, 70(10):8785-8797.
[5]Feng PY, Qu SW, Yang SW, 2018. Octave bandwidth transmit arrays with a flat gain. IEEE Trans Antenn Propag, 66(10):5231-5238.
[6]Han JQ, Li L, Liu GY, et al., 2019. A wideband 1 bit 12×12 reconfigurable beam-scanning reflectarray: design, fabrication, and measurement. IEEE Antenn Wirel Propag Lett, 18(6):1268-1272.
[7]Hao YN, Deng CJ, Cao XW, et al., 2024. A high aperture efficiency 1-bit reconfigurable reflectarray antenna with extremely low power consumption. IEEE Trans Antenn Propag, 72(1):1015-1020.
[8]Hum SV, Okoniewski M, Davies RJ, 2007. Modeling and design of electronically tunable reflectarrays. IEEE Trans Antenn Propag, 55(8):2200-2210.
[9]Jiang H, Xiong BP, Zhang HM, et al., 2023. Hybrid far- and near-field modeling for reconfigurable intelligent surface assisted V2V channels: a sub-array partition based approach. IEEE Trans Wirel Commun, 22(11):8290-8303.
[10]Jiang YH, Gao FF, Jian MN, et al., 2023. Reconfigurable intelligent surface for near field communications: beamforming and sensing. IEEE Trans Wirel Commun, 22(5):3447-3459.
[11]Kim H, Oh S, Bang S, et al., 2023. Independently polarization manipulable liquid-crystal-based reflective metasurface for 5G reflectarray and reconfigurable intelligent surface. IEEE Trans Antenn Propag, 71(8):6606-6616.
[12]Lee SG, Nam YH, Kim Y, et al., 2022. A wide-angle and high-efficiency reconfigurable reflectarray antenna based on a miniaturized radiating element. IEEE Access, 10:103223-103229.
[13]Li P, Yu H, Su JX, et al., 2023. A low-RCS multifunctional shared aperture with wideband reconfigurable reflectarray antenna and tunable scattering characteristic. IEEE Trans Antenn Propag, 71(1):621-630.
[14]Li XR, Lu HQ, Zeng Y, et al., 2022. Near-field modeling and performance analysis of modular extremely large-scale array communications. IEEE Commun Lett, 26(7):1529-1533.
[15]Li XY, Wan YL, Liu J, et al., 2021. Broadband electronically scanned reflectarray antenna with liquid crystals. IEEE Antenn Wirel Propag Lett, 20(3):396-400.
[16]Li ZP, Huo P, Wu Y, et al., 2021. Reflectarray compact antenna test range with controlled aperture disturbance fields. IEEE Antenn Wirel Propag Lett, 20(7):1283-1287.
[17]Luyen H, Booske JH, Behdad N, 2020. 2-bit phase quantization using mixed polarization-rotation/non-polarization-rotation reflection modes for beam-steerable reflectarrays. IEEE Trans Antenn Propag, 68(12):7937-7946.
[18]Mao YL, Xu SH, Yang F, et al., 2015. A novel phase synthesis approach for wideband reflectarray design. IEEE Trans Antenn Propag, 63(9):4189-4193.
[19]Mei P, Cai Y, Zhao K, et al., 2022. On the study of reconfigurable intelligent surfaces in the near-field region. IEEE Trans Antenn Propag, 70(10):8718-8728.
[20]Moghadas H, Daneshmand M, Mousavi P, 2015. MEMS-tunable half phase gradient partially reflective surface for beam-shaping. IEEE Trans Antenn Propag, 63(1):369-373.
[21]Pan WB, Huang C, Chen P, et al., 2013. A beam steering horn antenna using active frequency selective surface. IEEE Trans Antenn Propag, 61(12):6218-6223.
[22]Perruisseau-Carrier J, 2010. Dual-polarized and polarization-flexible reflective cells with dynamic phase control. IEEE Trans Antenn Propag, 58(5):1494-1502.
[23]Perruisseau-Carrier J, Skrivervik AK, 2008. Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 360° phase range. IEEE Antenn Wirel Propag Lett, 7:138-141.
[24]Vilenskiy AR, Makurin MN, Lee C, et al., 2020. Reconfigurable transmitarray with near-field coupling to gap waveguide array antenna for efficient 2-D beam steering. IEEE Trans Antenn Propag, 68(12):7854-7865.
[25]Wang EH, Peng GY, Zhong KJ, et al., 2024. A 1296-cell reconfigurable reflect-array antenna with 2-bit phase resolution for Ka-band applications. IEEE Trans Antenn Propag, 72(4):3425-3437.
[26]Wang XH, Shu F, Chen RQ, 2023. Beamforming design for RIS-aided amplify-and-forward relay networks. Front Inform Technol Electron Eng, 24(12):1728-1738.
[27]Wang ZL, Mu XD, Liu YW, 2023. Near-field integrated sensing and communications. IEEE Commun Lett, 27(8):2048-2052.
[28]Wu F, Zhao WG, Xia XY, et al., 2023. A 2 bit circularly polarized reconfigurable reflectarray using p-i-n-diode-tuned crossed-bowtie patch elements. IEEE Trans Antenn Propag, 71(9):7299-7309.
[29]Wymeersch H, He JG, Denis B, et al., 2020. Radio localization and mapping with reconfigurable intelligent surfaces: challenges, opportunities, and research directions. IEEE Veh Technol Mag, 15(4):52-61.
[30]Xiang BJ, Dai X, Luk KM, 2022. A wideband low-cost reconfigurable reflectarray antenna with 1-bit resolution. IEEE Trans Antenn Propag, 70(9):7439-7447.
[31]Xu DN, Han Y, Li X, et al., 2023. Energy efficiency optimization for a RIS-assisted multi-cell communication system based on a practical RIS power consumption model. Front Inform Technol Electron Eng, 24(12):1717-1727.
[32]Xu HJ, Xu SH, Yang F, et al., 2020. Design and experiment of a dual-band 1 bit reconfigurable reflectarray antenna with independent large-angle beam scanning capability. IEEE Antenn Wirel Propag Lett, 19(11):1896-1900.
[33]Xu JQ, Mu XD, Liu YW, 2024. Exploiting STAR-RISs in near-field communications. IEEE Trans Wirel Commun, 23(3):2181-2196.
[34]Yang HH, Yang F, Xu SH, et al., 2017. A study of phase quantization effects for reconfigurable reflectarray antennas. IEEE Antenn Wirel Propag Lett, 16:302-305.
[35]Yin YJ, Deng CJ, Cao XW, et al., 2024. Design of a 2-bit dual-polarized reconfigurable reflectarray with high aperture efficiency. IEEE Trans Antenn Propag, 72(1):542-552.
[36]Zhang QS, Zhang MT, Shi XW, et al., 2022. A low-profile beam-steering reflectarray with integrated leaky-wave feed and 2-bit phase resolution for Ka-band SatCom. IEEE Trans Antenn Propag, 70(3):1884-1894.
[37]Zhang X, Zhang HY, 2023. Hybrid reconfigurable intelligent surfaces-assisted near-field localization. IEEE Commun Lett, 27(1):135-139.
[38]Zhao YJ, 2023. Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions. Front Inform Technol Electron Eng, 24(12):1669-1688.
Open peer comments: Debate/Discuss/Question/Opinion
<1>