Full Text:   <354>

Summary:  <104>

CLC number: TN92

On-line Access: 2024-01-26

Received: 2022-12-27

Revision Accepted: 2023-05-18

Crosschecked: 2024-01-26

Cited: 0

Clicked: 458

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yajun ZHAO

https://orcid.org/0000-0001-8823-5282

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.12 P.1669-1688

http://doi.org/10.1631/FITEE.2200666


Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions


Author(s):  Yajun ZHAO

Affiliation(s):  Beijing Institute of Technology, Beijing 100081, China; more

Corresponding email(s):   zhao.yajun1@zte.com.cn

Key Words:  6G, Reconfigurable intelligent surface (RIS), Cascade channel decoupling, RIS regulatory constraint, RIS system architecture, True time delay


Yajun ZHAO. Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1669-1688.

@article{title="Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions",
author="Yajun ZHAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="12",
pages="1669-1688",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200666"
}

%0 Journal Article
%T Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions
%A Yajun ZHAO
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 12
%P 1669-1688
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200666

TY - JOUR
T1 - Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions
A1 - Yajun ZHAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 12
SP - 1669
EP - 1688
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200666


Abstract: 
Scholars are expected to continue enhancing the depth and breadth of theoretical research on reconfigurable intelligent surface (RIS) to provide a higher theoretical limit for RIS engineering applications. Notably, significant advancements have been achieved through both academic research breakthroughs and the promotion of engineering applications and industrialization. We provide an overview of RIS engineering applications, focusing primarily on their typical features, classifications, and deployment scenarios. Furthermore, we systematically and comprehensively analyze the challenges faced by RIS and propose potential solutions including addressing the beamforming issues through cascade channel decoupling, tackling the effects and resolutions of regulatory constraints on RIS, exploring the network-controlled mode for RIS system architecture, examining integrated channel regulation and information modulation, and investigating the use of the true time delay (TTD) mechanism for RIS. In addition, two key technical points, RIS-assisted non-orthogonal multiple access (NOMA) and RIS-based transmitter, are reviewed from the perspective of completeness. Finally, we discuss future trends and challenges in this field.

面向6G的可重构智能超表面:应用、挑战和解决方案

赵亚军1,2
1北京理工大学,中国北京市,100081
2中兴通讯,中国北京市,100029
摘要:学者们有望继续提高智能超表面(RIS)理论研究的深度和广度,为RIS工程应用提供更高的理论极限。通过诸多学术研究的突破以及工程化的推动,RIS技术研究已取得重大进展。本文首先概述RIS工程应用研究进展,主要关注其典型技术特性、分类和部署场景。然后,系统、全面地分析了RIS面临的挑战,提出潜在解决方案,包括通过级联信道解耦来解决波束成形问题、解决RIS调控约束的解决方案、探索RIS基于网络控制的系统架构、研究信道调控和信息调制的融合、研究真时延(TTD)机制在RIS中的使用,并探讨了RIS辅助非的正交多址接入(NOMA)和基于RIS的发射机。最后,讨论了该领域的未来趋势和挑战。

关键词:6G;智能超表面;级联信道解耦;RIS调控约束;RIS系统架构;真时延

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Avazov N, Hicheri R, Muaaz M, et al., 2021. A trajectory-driven 3D non-stationary mm-Wave MIMO channel model for a single moving point scatterer. IEEE Access, 9:‍115990-116001.

[2]Bansal A, Agrawal N, Singh K, 2023. Rate-splitting multiple access for UAV-based RIS-enabled interference-limited vehicular communication system. IEEE Trans Intell Veh, 8(1):936-948.

[3]Basar E, 2020. Reconfigurable intelligent surface-based index modulation: a new beyond MIMO paradigm for 6G. IEEE Trans Commun, 68(5):3187-3196.

[4]Basar E, Wen MW, Mesleh R, et al., 2017. Index modulation techniques for next-generation wireless networks. IEEE Access, 5:16693-16746.

[5]Basar E, di Renzo M, De Rosny J, et al., 2019. Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7:116753-116773.

[6]Basharat S, Hassan SA, Pervaiz H, et al., 2021. Reconfigurable intelligent surfaces: potentials, applications, and challenges for 6G wireless networks. IEEE Wirel Commun, 28(6):184-191.

[7]Bharadia D, Joshi KR, Kotaru M, et al., 2015. BackFi: high throughput WiFi backscatter. ACM SIGCOMM Comput Commun Rev, 45(4):283-296.

[8]Cantos L, Awais M, Kim YH, 2022. Max-min rate optimization for uplink IRS-NOMA with receive beamforming. IEEE Wirel Commun Lett, 11(12):2512-2516.

[9]Cui TJ, 2018. Information metamaterial and metasurface - from concept to system. Proc 43rd Int Conf on Infrared, Millimeter, and Terahertz Waves, p.1-3.

[10]Cui TJ, Liu S, Zhang L, 2017. Information metamaterials and metasurfaces. J Mater Chem C, 5(15):3644-3668.

[11]Cui TJ, Wu HT, Liu S, 2020. Research progress of information metamaterials. Acta Phys Sin, 69(15):158101(in Chinese).

[12]Darsena D, Gelli G, Verde F, 2019. Design and performance analysis of multiple-relay cooperative MIMO networks. J Commun Netw, 21(1):25-32.

[13]de Sena AS, Nardelli PHJ, da Costa DB, et al., 2021. IRS-assisted massive MIMO-NOMA networks: exploiting wave polarization. IEEE Trans Wirel Commun, 20(11):7166-7183.

[14]di Renzo M, Debbah M, Phan-Huy DT, et al., 2019. Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. EURASIP J Wirel Commun Netw, 2019:129.

[15]Ding Y, Fusco V, Shitvov A, et al., 2018. Beam index modulation wireless communication with analog beamforming. IEEE Trans Veh Technol, 67(7):6340-6354.

[16]Ding YC, Kim KJ, Koike-Akino T, et al., 2017. Spatial scattering modulation for uplink millimeter-Wave systems. IEEE Commun Lett, 21(7):1493-1496.

[17]Ding ZG, Lv L, Fang F, et al., 2022. A state-of-the-art survey on reconfigurable intelligent surface-assisted non-orthogonal multiple access networks. Proc IEEE, 110(9):1358-1379.

[18]Guo SS, Lv SH, Zhang HX, et al., 2020. Reflecting modulation. IEEE J Sel Areas Commun, 38(11):2548-2561.

[19]Hu C, Dai LL, Han SF, et al., 2021. Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications. IEEE Trans Commun, 69(11):7736-7747.

[20]Hua M, Wu QQ, Yang LX, et al., 2022. A novel wireless communication paradigm for intelligent reflecting surface based symbiotic radio systems. IEEE Trans Signal Process, 70:550-565.

[21]Jian MN, Alexandropoulos GC, Basar E, et al., 2022. Reconfigurable intelligent surfaces for wireless communications: overview of hardware designs, channel models, and estimation techniques. Intell Converged Netw, 3(1):1-32.

[22]Kellogg B, Talla V, Gollakota S, et al., 2016. Passive Wi-Fi: bringing low power to Wi-Fi transmissions. Proc 13th USENIX Conf on Networked Systems Design and Implementation, p.151-164.

[23]Khaleel A, Basar E, 2021. Reconfigurable intelligent surface-empowered MIMO systems. IEEE Syst J, 15(3):4358-4366.

[24]Li HD, Fang F, Ding ZG, 2021. DRL-assisted resource allocation for NOMA-MEC offloading with hybrid SIC. Entropy, 23(5):613.

[25]Li QC, El-Hajjar M, Hemadeh I, et al., 2023a. Performance analysis of active RIS-aided systems in the face of imperfect CSI and phase shift noise. IEEE Trans Veh Technol, 72(6):8140-8145.

[26]Li QC, El-Hajjar M, Hemadeh I, et al., 2023b. Reconfigurable intelligent surface aided amplitude- and phase-modulated downlink transmission. IEEE Trans Veh Technol, 72(6):8146-8151.

[27]Li QC, El-Hajjar M, Hemadeh I, et al., 2023c. The reconfigurable intelligent surface-aided multi-node IoT downlink: beamforming design and performance analysis. IEEE Int Things J, 10(7):6400-6414.

[28]Lin CC, Boljanovic V, Yan H, et al., 2021. Wideband beamforming with rainbow beam training using reconfigurable true-time-delay arrays for millimeter-Wave wireless.

[29]Liu YW, Qin ZJ, Elkashlan M, et al., 2017. Nonorthogonal multiple access for 5G and beyond. Proc IEEE, 105(12):2347-2381.

[30]Liu YW, Liu X, Mu XD, et al., 2021. Reconfigurable intelligent surfaces: principles and opportunities. IEEE Commun Surv Tut, 23(3):1546-1577.

[31]Liu YW, Mu XD, Liu X, et al., 2022a. Reconfigurable intelligent surface-aided multi-user networks: interplay between NOMA and RIS. IEEE Wirel Commun, 29(2):169-176.

[32]Liu YW, Mu XD, Schober R, et al., 2022b. Simultaneously transmitting and reflecting (STAR)-RISs: a coupled phase-shift model. Proc IEEE Int Conf on Communications, p.2840-2845.

[33]Long RZ, Guo HY, Yang G, et al., 2018. Symbiotic radio: a new communication paradigm for passive Internet-of-Things. https://arxiv.org/abs/1810.13068

[34]Lu L, Li GY, Swindlehurst AL, et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J Sel Top Signal Process, 8(5):742-758.

[35]Ma HB, Zhang P, Yang F, et al., 2022. Reflections on reconfigurable intelligent surface technology. ZTE Technol J, 28(3):70-77(in Chinese).

[36]Mizmizi M, Ayoubi RA, Tagliaferri D, et al., 2023. Conformal metasurfaces: a novel solution for vehicular communications. IEEE Trans Wirel Commun, 22(4):2804-2817.

[37]Mu XD, Liu YW, Guo L, et al., 2020. Exploiting intelligent reflecting surfaces in NOMA networks: joint beamforming optimization. IEEE Trans Wirel Commun, 19(10):6884-6898.

[38]Mu XD, Liu YW, Guo L, et al., 2021. Joint deployment and multiple access design for intelligent reflecting surface assisted networks. IEEE Trans Wirel Commun, 20(10):6648-6664.

[39]Özdogan Ö, Björnson E, Larsson EG, 2020. Intelligent reflecting surfaces: physics, propagation, and pathloss modeling. IEEE Wirel Commun Lett, 9(5):581-585.

[40]Pan CH, Ren H, Wang KZ, et al., 2021. Reconfigurable intelligent surfaces for 6G systems: principles, applications, and research directions. IEEE Commun Mag, 59(6):14-20.

[41]Park SH, Kim B, Kim DK, et al., 2023. Beam squint in ultra-wideband mmWave systems: RF lens array vs. phase-shifter-based array. IEEE Wirel Commun, 30(4):82-89.

[42]Ratnam VV, Mo JH, Alammouri A, et al., 2022. Joint phase-time arrays: a paradigm for frequency-dependent analog beamforming in 6G. IEEE Access, 10:73364-73377.

[43]Rotman R, Tur M, Yaron L, 2023. True time delay in phased arrays. Proc IEEE, 104(3):504-518.

[44]Taha A, Alrabeiah M, Alkhateeb A, 2021. Enabling large intelligent surfaces with compressive sensing and deep learning. IEEE Access, 9:44304-44321.

[45]Tang WK, Dai JY, Chen MZ, et al., 2019. Programmable metasurface-based RF chain-free 8PSK wireless transmitter. Electr Lett, 55(7):417-420.

[46]Tang WK, Dai JY, Cehn MZ, et al., 2020. MIMO transmission through reconfigurable intelligent surface: system design, analysis, and implementation. IEEE J Sel Areas Commun, 38(11):2683-2699.

[47]van Huynh N, Hoang DT, Lu X, et al., 2018. Ambient backscatter communications: a contemporary survey. IEEE Commun Surv Tut, 20(4):2889-2922.

[48]Wang D, Tan YH, Yin LZ, et al., 2019. A subwavelength 1-bit broadband reconfigurable reflectarray element based on slotting technology. Proc Int Applied Computational Electromagnetics Society Symp-China, p.1-2.

[49]Wei XH, Shen DC, Dai LL, 2021. Channel estimation for RIS assisted wireless communications—part II: an improved solution based on double-structured sparsity. IEEE Commun Lett, 25(5):1403-1407.

[50]Wu QQ, Zhou XB, Schober R, 2021. IRS-assisted wireless powered NOMA: do we really need different phase shifts in DL and UL?IEEE Wirel Commun Lett, 10(7):1493-1497.

[51]Xu HQ, Zhao YJ, Mo LM, et al., 2012. Inter-cell antenna calibration for coherent joint transmission in TDD system. Proc IEEE Globecom Workshops, p.297-301.

[52]Yan H, Boljanovic V, Cabric D, 2019. Wideband millimeter-Wave beam training with true-time-delay array architecture. Proc 53rd Asilomar Conf on Signals, Systems, and Computers, p.1447-1452.

[53]Yang G, Liang YC, Zhang R, et al., 2018. Modulation in the air: backscatter communication over ambient OFDM carrier. IEEE Trans Commun, 66(3):1219-1233.

[54]Yang G, Xu XY, Liang YC, et al., 2021. Reconfigurable intelligent surface-assisted non-orthogonal multiple access. IEEE Trans Wirel Commun, 20(5):3137-3151.

[55]Yuan J, Wen MW, Li Q, et al., 2021. Receive quadrature reflecting modulation for RIS-empowered wireless communications. IEEE Trans Veh Technol, 70(5):5121-5125.

[56]Yuan YF, Zhao YJ, Zong BQ, et al., 2020. Potential key technologies for 6G mobile communications. Sci China Inform Sci, 63(8):183301.

[57]Zhang DC, Wu QQ, Cui M, et al., 2021. Throughput maximization for IRS-assisted wireless powered hybrid NOMA and TDMA. IEEE Wirel Commun Lett, 10(9):1944-1948.

[58]Zhang L, Chen MZ, Tang WK, et al., 2021. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat Electr, 4(3):218-227.

[59]Zhang YW, Shen KM, Ren SY, et al., 2022. Configuring intelligent reflecting surface with performance guarantees: optimal beamforming. IEEE J Sel Top Signal Process, 16(5):967-979.

[60]Zhang ZJ, Dai LL, Chen XB, et al., 2023. Active RIS vs. passive RIS: which will prevail in 6G?IEEE Trans Commun, 71(3):1707-1725.

[61]Zhao MM, Wu QQ, Zhao MJ, et al., 2021. Exploiting amplitude control in intelligent reflecting surface aided wireless communication with imperfect CSI. IEEE Trans Commun, 69(6):4216-4231.

[62]Zhao YJ, Jian MN, 2022. Applications and challenges of reconfigurable intelligent surface for 6G networks.

[63]Zhao YJ, Lv X, 2022. Network coexistence analysis of RIS-assisted wireless communications. IEEE Access, 10:63442-63454.

[64]Zhao YJ, Yu GH, Xu HQ, 2019. 6G mobile communication networks: vision, challenges, and key technologies. Sci Sin Inform, 49(8):963-987(in Chinese).

[65]Zhao YJ, Zhang JY, Ai B, 2021. Applications of reconfigurable intelligent surface in smart high-speed railway communications. ZTE Technol J, 27(4):36-43(in Chinese).

[66]Zhu GX, Huang KB, Lau VKN, et al., 2017. Hybrid beamforming via the Kronecker decomposition for the millimeter-Wave massive MIMO systems. IEEE J Sel Areas Commun, 35(9):2097-2114.

[67]Zhu JA, Liu KZ, Wan ZZC, et al., 2023. Sensing RISs: enabling dimension-independent CSI acquisition for beamforming. IEEE Trans Inform Theory, 69(6):3795-3813.

[68]ZTE, 2021. RP-213700 New SI: Study on NR network-controlled Repeaters, 3GPP TSG RAN Meeting #94e, Electronic Meeting.

[69]Zuo JK, Liu YW, Qin ZJ, et al., 2020. Resource allocation in intelligent reflecting surface assisted NOMA systems. IEEE Trans Commun, 68(11):7170-7183.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE