CLC number: TN929.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-08-17
Cited: 0
Clicked: 1462
Yuanwei LIU, Jiaqi XU, Zhaolin WANG, Xidong MU, Jianhua ZHANG, Ping ZHANG. Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1689-1707.
@article{title="Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions",
author="Yuanwei LIU, Jiaqi XU, Zhaolin WANG, Xidong MU, Jianhua ZHANG, Ping ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="12",
pages="1689-1707",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300490"
}
%0 Journal Article
%T Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions
%A Yuanwei LIU
%A Jiaqi XU
%A Zhaolin WANG
%A Xidong MU
%A Jianhua ZHANG
%A Ping ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 12
%P 1689-1707
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300490
TY - JOUR
T1 - Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions
A1 - Yuanwei LIU
A1 - Jiaqi XU
A1 - Zhaolin WANG
A1 - Xidong MU
A1 - Jianhua ZHANG
A1 - Ping ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 12
SP - 1689
EP - 1707
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300490
Abstract: Simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) have been attracting significant attention in both academia and industry for their advantages of achieving 360° coverage and enhanced degrees-of-freedom. This article first identifies the fundamentals of STAR-RIS, by discussing the hardware models, channel models, and signal models. Then, three representative categorizing approaches for STAR-RISs are introduced from the phase-shift, directional, and energy consumption perspectives. Furthermore, the beamforming design of STAR-RISs is investigated for both independent and coupled phase-shift cases. As a recent advance, a general optimization framework, which has high compatibility and provable optimality regardless of the application scenarios, is proposed. As a further advance, several promising applications are discussed to demonstrate the potential benefits of applying STAR-RISs in sixth-generation wireless communication. Lastly, a few future directions and research opportunities are highlighted.
[1]Alexandropoulos GC, Stylianopoulos K, Huang CW, et al., 2022. Pervasive machine learning for smart radio environments enabled by reconfigurable intelligent surfaces. Proc IEEE, 110(9):1494-1525.
[2]An JC, Xu C, Wu QQ, et al., 2022. Codebook-based solutions for reconfigurable intelligent surfaces and their open challenges. IEEE Wirel Commun, early access.
[3]Bao L, Ma Q, Wu RY, et al., 2021. Programmable reflection-transmission shared-aperture metasurface for real-time control of electromagnetic waves in full space. Adv Sci, 8(15):2100149.
[4]Cai WH, Liu R, Liu Y, et al., 2021. Joint beamforming designs for intelligent omni surface assisted wireless communication systems. Proc IEEE Global Commun Conf, p.1-6.
[5]Cheng YJ, Peng W, Huang CW, et al., 2022. RIS-aided wireless communications: extra degrees of freedom via rotation and location optimization. IEEE Trans Wirel Commun, 21(8):6656-6671.
[6]Cui M, Zhang GC, Zhang R, 2019. Secure wireless communication via intelligent reflecting surface. IEEE Wirel Commun Lett, 8(5):1410-1414.
[7]di Renzo M, Zappone A, Debbah M, et al., 2020. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J Sel Areas Commun, 38(11):2450-2525.
[8]Gao FF, Wang BL, Xing CW, et al., 2021. Wideband beamforming for hybrid massive MIMO terahertz communications. IEEE J Sel Areas Commun, 39(6):1725-1740.
[9]Guo HY, Liang YC, Chen J, et al., 2020. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans Wirel Commun, 19(5):3064-3076.
[10]Huang CW, Zappone A, Alexandropoulos GC, et al., 2019. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans Wirel Commun, 18(8):4157-4170.
[11]Huang CW, Hu S, Alexandropoulos GC, et al., 2020. Holographic MIMO surfaces for 6G wireless networks: opportunities, challenges, and trends. IEEE Wirel Commun, 27(5):118-125.
[12]Jian MN, Alexandropoulos GC, Basar E, et al., 2022. Reconfigurable intelligent surfaces for wireless communications: overview of hardware designs, channel models, and estimation techniques. Intell Conv Netw, 3(1):1-32.
[13]Li SX, Duo B, Yuan XJ, et al., 2020. Reconfigurable intelligent surface assisted UAV communication: joint trajectory design and passive beamforming. IEEE Wirel Commun Lett, 9(5):716-720.
[14]Lin YM, Shen YJ, Li A, 2023. Simultaneous transmission and reflection beamforming design for RIS-aided MU-MISO. IEEE Trans Veh Technol, 72(3):4040-4045.
[15]Liu X, Liu YW, Chen Y, 2021. Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks. IEEE J Sel Areas Commun, 39(7):2042-2055.
[16]Liu YW, Liu X, Mu XD, et al., 2021a. Reconfigurable intelligent surfaces: principles and opportunities. IEEE Commun Surv Tut, 23(3):1546-1577.
[17]Liu YW, Mu XD, Xu JQ, et al., 2021b. STAR: simultaneous transmission and reflection for 360° coverage by intelligent surfaces. IEEE Wirel Commun, 28(6):102-109.
[18]Liu YW, Mu XD, Liu X, et al., 2022a. Reconfigurable intelligent surface-aided multi-user networks: interplay between NOMA and RIS. IEEE Wirel Commun, 29(2):169-176.
[19]Liu YW, Mu XD, Schober R, et al., 2022b. Simultaneously transmitting and reflecting (STAR)-RISs: a coupled phase-shift model. IEEE Wirel Commun, 29(2):169-176.
[20]Mu XD, Liu YW, Guo L, et al., 2022. Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications. IEEE Trans Wirel Commun, 21(5):3083-3098.
[21]Nguyen TH, Nguyen TT, 2022. On performance of STAR-RIS-enabled multiple two-way full-duplex D2D communication systems. IEEE Access, 10:89063-89071.
[22]Niu HH, Liang XH, 2023. Weighted sum-rate maximization for STAR-RISs-aided networks with coupled phase-shifters. IEEE Syst J, 17(1):1083-1086.
[23]Niu HH, Chu Z, Zhou FH, et al., 2022. Weighted sum rate optimization for STAR-RIS-assisted MIMO system. IEEE Trans Veh Technol, 71(2):2122-2127.
[24]NTT DOCOMO, 2020. DOCOMO Conducts World’s First Successful Trial of Transparent Dynamic Metasurface. www.docomo.ne.jp/english/info/media_center/pr/2020/0117_00.html [Accessed on Mar. 26, 2022].
[25]Pan CH, Ren H, Wang KZ, et al., 2020a. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE J Sel Areas Commun, 38(8):1719-1734.
[26]Pan CH, Ren H, Wang KZ, et al., 2020b. Multicell MIMO communications relying on intelligent reflecting surfaces. IEEE Trans Wirel Commun, 19(8):5218-5233.
[27]Papazafeiropoulos A, Abdullah Z, Kourtessis P, et al., 2022. Coverage probability of STAR-RIS-assisted massive MIMO systems with correlation and phase errors. IEEE Wirel Commun Lett, 11(8):1738-1742.
[28]Pozar DM, 2011. Microwave Engineering (4th Ed.). John Wiley & Sons, New York, USA.
[29]Shen H, Xu W, Gong SL, et al., 2019. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications. IEEE Commun Lett, 23(9):1488-1492.
[30]Tang YZ, Ma GG, Xie HL, et al., 2020. Joint transmit and reflective beamforming design for IRS-assisted multiuser MISO SWIPT systems. IEEE Int Conf Communications, p.1-6.
[31]Wang TX, Badiu MA, Chen GJ, et al., 2022a. Outage probability analysis of STAR-RIS assisted NOMA network with correlated channels. IEEE Commun Lett, 26(8):1774-1778.
[32]Wang TX, Badiu MA, Chen GJ, et al., 2022b. Performance analysis of IOS-assisted NOMA system with channel correlation and phase errors. IEEE Trans Veh Technol, 71(11):11861-11875.
[33]Wang ZL, Mu XD, Liu YW, et al., 2023a. Coupled phase-shift STAR-RISs: a general optimization framework. IEEE Wirel Commun Lett, 12(2):207-211.
[34]Wang ZL, Mu XD, Xu JQ, et al., 2023b. Simultaneously transmitting and reflecting surface (STARS) for terahertz communications. IEEE J Sel Top Signal Process, 17(4):861-877.
[35]Wang ZL, Mu XD, Liu YW, 2023c. STARS enabled integrated sensing and communications. IEEE Trans Wirel Commun, early access.
[36]Wu CY, You CS, Liu YW, et al., 2022. Channel estimation for STAR-RIS-aided wireless communication. IEEE Commun Lett, 26(3):652-656.
[37]Wu QQ, Zhang R, 2019. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wirel Commun, 18(11):5394-5409.
[38]Wu QQ, Zhang R, 2020a. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun Mag, 58(1):106-112.
[39]Wu QQ, Zhang R, 2020b. Weighted sum power maximization for intelligent reflecting surface aided SWIPT. IEEE Wirel Commun Lett, 9(5):586-590.
[40]Xie HL, Xu J, Liu YF, 2021. Max-min fairness in IRS-aided multi-cell MISO systems with joint transmit and reflective beamforming. IEEE Trans Wirel Commun, 20(2):1379-1393.
[41]Xu JD, Yuen C, Huang CW, et al., 2023. Reconfiguring wireless environments via intelligent surfaces for 6G: reflection, modulation, and security. Sci China Inform Sci, 66(3):130304.
[42]Xu JQ, Liu YW, Mu XD, et al., 2021. STAR-RISs: simultaneous transmitting and reflecting reconfigurable intelligent surfaces. IEEE Commun Lett, 25(9):3134-3138.
[43]Xu JQ, Liu YW, Mu XD, et al., 2022a. Simultaneously transmitting and reflecting intelligent omni-surfaces: modeling and implementation. IEEE Veh Technol Mag, 17(2):46-54.
[44]Xu JQ, Liu YW, Mu XD, et al., 2022b. STAR-RISs: a correlated T&R phase-shift model and practical phase-shift configuration strategies. IEEE J Sel Top Signal Process, 16(5):1097-1111.
[45]Xu JQ, Zuo JK, Zhou JT, et al., 2023a. Active simultaneously transmitting and reflecting (STAR)-RISs: modelling and analysis. IEEE Commun Lett, 27(9):2466-2470.
[46]Xu JQ, Mu XD, Liu YW, 2023b. Exploiting STAR-RISs in near-field communications. IEEE Trans Wirel Commun, early access.
[47]Xu JQ, Mu XD, Zhou JT, et al., 2023c. Simultaneously transmitting and reflecting (STAR)-RISs: are they applicable to dual-sided incidence? IEEE Wirel Commun Lett, 12(1):129-133.
[48]Yan WC, Hao WM, Huang CW, et al., 2023. Beamforming analysis and design for wideband THz reconfigurable intelligent surface communications. https://arxiv.org/abs/2207.11926
[49]Yang B, Cao XL, Xu JD, et al., 2023. Reconfigurable intelligent computational surfaces: when wave propagation control meets computing. IEEE Wirel Commun, 30(3):120-128.
[50]Yu XH, Xu DF, Sun Y, et al., 2020. Robust and secure wireless communications via intelligent reflecting surfaces. IEEE J Sel Areas Commun, 38(11):2637-2652.
[51]Yu XH, Xu DF, Ng DWK, et al., 2021. IRS-assisted green communication systems: provable convergence and robust optimization. IEEE Trans Commun, 69(9):6313-6329.
[52]Zhang C, Yi WQ, Liu YW, et al., 2022. STAR-IOS aided NOMA networks: channel model approximation and performance analysis. IEEE Trans Wirel Commun, 21(9):6861-6876.
[53]Zhang QQ, Saad W, Bennis M, 2019. Reflections in the sky: millimeter wave communication with UAV-carried intelligent reflectors. Proc IEEE Global Communications Conf, p.1-6.
[54]Zhang SH, Zhang HL, Di BY, et al., 2020. Beyond intelligent reflecting surfaces: reflective-transmissive metasurface aided communications for full-dimensional coverage extension. IEEE Trans Veh Technol, 69(11):13905-13909.
[55]Zhang SH, Zhang HL, Di BY, et al., 2021. Intelligent omni-surface: ubiquitous wireless transmission by reflective-transmissive metasurface. https://arxiv.org/abs/2011.00765
[56]Zhang SW, Zhang R, 2020. Capacity characterization for intelligent reflecting surface aided MIMO communication. IEEE J Sel Areas Commun, 38(8):1823-1838.
[57]Zhang Z, Wang ZL, Liu YW, et al., 2023. Security enhancement for coupled phase-shift STAR-RIS networks. IEEE Trans Veh Technol, 72(6):8210-8215.
[58]Zhang ZH, Sun Q, Zhang JY, et al., 2023. Ergodic capacity of intelligent omni-surface-aided communication systems with phase quantization errors and outdated CSI. IEEE Syst J, 17(2):1889-1898.
[59]Zheng BX, Wu QQ, Zhang R, 2020. Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA? IEEE Commun Lett, 24(4):753-757.
[60]Zhong RK, Liu YW, Mu XD, et al., 2022. Hybrid reinforcement learning for STAR-RISs: a coupled phase-shift model based beamformer. IEEE Int Conf on Communications, p.2840-2845.
[61]Zhu BO, Chen K, Jia N, et al., 2014. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Sci Rep, 4(1):4971.
[62]Zuo JK, Liu YW, Ding ZG, et al., 2023. Joint design for simultaneously transmitting and reflecting (STAR) RIS assisted NOMA systems. IEEE Trans Wirel Commun, 22(1):611-626.
Open peer comments: Debate/Discuss/Question/Opinion
<1>