Full Text:   <2097>

Summary:  <340>

CLC number: TN929.5

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-08-17

Cited: 0

Clicked: 1462

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yuanwei LIU

https://orcid.org/0000-0002-6389-8941

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.12 P.1689-1707

http://doi.org/10.1631/FITEE.2300490


Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions


Author(s):  Yuanwei LIU, Jiaqi XU, Zhaolin WANG, Xidong MU, Jianhua ZHANG, Ping ZHANG

Affiliation(s):  School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK; more

Corresponding email(s):   yuanwei.liu@qmul.ac.uk

Key Words:  Sixth-generation wireless communication (6G), Reconfigurable intelligent surface (RIS), Smart radio environment, Simultaneous transmission and reflection


Yuanwei LIU, Jiaqi XU, Zhaolin WANG, Xidong MU, Jianhua ZHANG, Ping ZHANG. Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1689-1707.

@article{title="Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions",
author="Yuanwei LIU, Jiaqi XU, Zhaolin WANG, Xidong MU, Jianhua ZHANG, Ping ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="12",
pages="1689-1707",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300490"
}

%0 Journal Article
%T Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions
%A Yuanwei LIU
%A Jiaqi XU
%A Zhaolin WANG
%A Xidong MU
%A Jianhua ZHANG
%A Ping ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 12
%P 1689-1707
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300490

TY - JOUR
T1 - Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions
A1 - Yuanwei LIU
A1 - Jiaqi XU
A1 - Zhaolin WANG
A1 - Xidong MU
A1 - Jianhua ZHANG
A1 - Ping ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 12
SP - 1689
EP - 1707
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300490


Abstract: 
Simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) have been attracting significant attention in both academia and industry for their advantages of achieving 360° coverage and enhanced degrees-of-freedom. This article first identifies the fundamentals of STAR-RIS, by discussing the hardware models, channel models, and signal models. Then, three representative categorizing approaches for STAR-RISs are introduced from the phase-shift, directional, and energy consumption perspectives. Furthermore, the beamforming design of STAR-RISs is investigated for both independent and coupled phase-shift cases. As a recent advance, a general optimization framework, which has high compatibility and provable optimality regardless of the application scenarios, is proposed. As a further advance, several promising applications are discussed to demonstrate the potential benefits of applying STAR-RISs in sixth-generation wireless communication. Lastly, a few future directions and research opportunities are highlighted.

面向6G的融合透射与反射智能超表面技术:基本原理、最新进展和未来方向

刘元玮1,许嘉琪1,王照霖1,慕熹东1,张建华2,张平2
1伦敦玛丽女王大学电子工程与计算机科学学院,英国伦敦市,E1 4NS
2北京邮电大学网络与交换技术国家重点实验室,中国北京市,100876
摘要:融合透射与反射智能超表面(STAR-RIS)因其可实现360°覆盖和增强自由度的优势而备受学术界和工业界关注。本文首先从硬件模型、信道模型和信号模型3个角度概述STAR-RIS的基本原理。随后,从相移、方向性和能耗角度介绍STAR-RIS的3种代表性分类方法。本文还研究了独立相移和耦合相移情况下STAR-RIS的波束成形设计,并针对两种相移模型提出一个通用优化框架。该框架具有很高的兼容性和可证明的最优性,并且不受应用场景限制。为展现STAR-RIS的潜在优势,进一步讨论了STAR-RIS在第六代无线通信(6G)中几个前景广阔的应用。最后,针对性地探讨了STAR-RIS未来的研究方向和机遇。

关键词:第六代无线通信(6G);智能超表面;智能无线电环境;融合透射与反射

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alexandropoulos GC, Stylianopoulos K, Huang CW, et al., 2022. Pervasive machine learning for smart radio environments enabled by reconfigurable intelligent surfaces. Proc IEEE, 110(9):1494-1525.

[2]An JC, Xu C, Wu QQ, et al., 2022. Codebook-based solutions for reconfigurable intelligent surfaces and their open challenges. IEEE Wirel Commun, early access.

[3]Bao L, Ma Q, Wu RY, et al., 2021. Programmable reflection-transmission shared-aperture metasurface for real-time control of electromagnetic waves in full space. Adv Sci, 8(15):2100149.

[4]Cai WH, Liu R, Liu Y, et al., 2021. Joint beamforming designs for intelligent omni surface assisted wireless communication systems. Proc IEEE Global Commun Conf, p.1-6.

[5]Cheng YJ, Peng W, Huang CW, et al., 2022. RIS-aided wireless communications: extra degrees of freedom via rotation and location optimization. IEEE Trans Wirel Commun, 21(8):6656-6671.

[6]Cui M, Zhang GC, Zhang R, 2019. Secure wireless communication via intelligent reflecting surface. IEEE Wirel Commun Lett, 8(5):1410-1414.

[7]di Renzo M, Zappone A, Debbah M, et al., 2020. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J Sel Areas Commun, 38(11):2450-2525.

[8]Gao FF, Wang BL, Xing CW, et al., 2021. Wideband beamforming for hybrid massive MIMO terahertz communications. IEEE J Sel Areas Commun, 39(6):1725-1740.

[9]Guo HY, Liang YC, Chen J, et al., 2020. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans Wirel Commun, 19(5):3064-3076.

[10]Huang CW, Zappone A, Alexandropoulos GC, et al., 2019. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans Wirel Commun, 18(8):4157-4170.

[11]Huang CW, Hu S, Alexandropoulos GC, et al., 2020. Holographic MIMO surfaces for 6G wireless networks: opportunities, challenges, and trends. IEEE Wirel Commun, 27(5):118-125.

[12]Jian MN, Alexandropoulos GC, Basar E, et al., 2022. Reconfigurable intelligent surfaces for wireless communications: overview of hardware designs, channel models, and estimation techniques. Intell Conv Netw, 3(1):1-32.

[13]Li SX, Duo B, Yuan XJ, et al., 2020. Reconfigurable intelligent surface assisted UAV communication: joint trajectory design and passive beamforming. IEEE Wirel Commun Lett, 9(5):716-720.

[14]Lin YM, Shen YJ, Li A, 2023. Simultaneous transmission and reflection beamforming design for RIS-aided MU-MISO. IEEE Trans Veh Technol, 72(3):4040-4045.

[15]Liu X, Liu YW, Chen Y, 2021. Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks. IEEE J Sel Areas Commun, 39(7):2042-2055.

[16]Liu YW, Liu X, Mu XD, et al., 2021a. Reconfigurable intelligent surfaces: principles and opportunities. IEEE Commun Surv Tut, 23(3):1546-1577.

[17]Liu YW, Mu XD, Xu JQ, et al., 2021b. STAR: simultaneous transmission and reflection for 360° coverage by intelligent surfaces. IEEE Wirel Commun, 28(6):102-109.

[18]Liu YW, Mu XD, Liu X, et al., 2022a. Reconfigurable intelligent surface-aided multi-user networks: interplay between NOMA and RIS. IEEE Wirel Commun, 29(2):169-176.

[19]Liu YW, Mu XD, Schober R, et al., 2022b. Simultaneously transmitting and reflecting (STAR)-RISs: a coupled phase-shift model. IEEE Wirel Commun, 29(2):169-176.

[20]Mu XD, Liu YW, Guo L, et al., 2022. Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications. IEEE Trans Wirel Commun, 21(5):3083-3098.

[21]Nguyen TH, Nguyen TT, 2022. On performance of STAR-RIS-enabled multiple two-way full-duplex D2D communication systems. IEEE Access, 10:89063-89071.

[22]Niu HH, Liang XH, 2023. Weighted sum-rate maximization for STAR-RISs-aided networks with coupled phase-shifters. IEEE Syst J, 17(1):1083-1086.

[23]Niu HH, Chu Z, Zhou FH, et al., 2022. Weighted sum rate optimization for STAR-RIS-assisted MIMO system. IEEE Trans Veh Technol, 71(2):2122-2127.

[24]NTT DOCOMO, 2020. DOCOMO Conducts World’s First Successful Trial of Transparent Dynamic Metasurface. www.docomo.ne.jp/english/info/media_center/pr/2020/0117_00.html [Accessed on Mar. 26, 2022].

[25]Pan CH, Ren H, Wang KZ, et al., 2020a. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE J Sel Areas Commun, 38(8):1719-1734.

[26]Pan CH, Ren H, Wang KZ, et al., 2020b. Multicell MIMO communications relying on intelligent reflecting surfaces. IEEE Trans Wirel Commun, 19(8):5218-5233.

[27]Papazafeiropoulos A, Abdullah Z, Kourtessis P, et al., 2022. Coverage probability of STAR-RIS-assisted massive MIMO systems with correlation and phase errors. IEEE Wirel Commun Lett, 11(8):1738-1742.

[28]Pozar DM, 2011. Microwave Engineering (4th Ed.). John Wiley & Sons, New York, USA.

[29]Shen H, Xu W, Gong SL, et al., 2019. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications. IEEE Commun Lett, 23(9):1488-1492.

[30]Tang YZ, Ma GG, Xie HL, et al., 2020. Joint transmit and reflective beamforming design for IRS-assisted multiuser MISO SWIPT systems. IEEE Int Conf Communications, p.1-6.

[31]Wang TX, Badiu MA, Chen GJ, et al., 2022a. Outage probability analysis of STAR-RIS assisted NOMA network with correlated channels. IEEE Commun Lett, 26(8):1774-1778.

[32]Wang TX, Badiu MA, Chen GJ, et al., 2022b. Performance analysis of IOS-assisted NOMA system with channel correlation and phase errors. IEEE Trans Veh Technol, 71(11):11861-11875.

[33]Wang ZL, Mu XD, Liu YW, et al., 2023a. Coupled phase-shift STAR-RISs: a general optimization framework. IEEE Wirel Commun Lett, 12(2):207-211.

[34]Wang ZL, Mu XD, Xu JQ, et al., 2023b. Simultaneously transmitting and reflecting surface (STARS) for terahertz communications. IEEE J Sel Top Signal Process, 17(4):861-877.

[35]Wang ZL, Mu XD, Liu YW, 2023c. STARS enabled integrated sensing and communications. IEEE Trans Wirel Commun, early access.

[36]Wu CY, You CS, Liu YW, et al., 2022. Channel estimation for STAR-RIS-aided wireless communication. IEEE Commun Lett, 26(3):652-656.

[37]Wu QQ, Zhang R, 2019. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wirel Commun, 18(11):5394-5409.

[38]Wu QQ, Zhang R, 2020a. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun Mag, 58(1):106-112.

[39]Wu QQ, Zhang R, 2020b. Weighted sum power maximization for intelligent reflecting surface aided SWIPT. IEEE Wirel Commun Lett, 9(5):586-590.

[40]Xie HL, Xu J, Liu YF, 2021. Max-min fairness in IRS-aided multi-cell MISO systems with joint transmit and reflective beamforming. IEEE Trans Wirel Commun, 20(2):1379-1393.

[41]Xu JD, Yuen C, Huang CW, et al., 2023. Reconfiguring wireless environments via intelligent surfaces for 6G: reflection, modulation, and security. Sci China Inform Sci, 66(3):130304.

[42]Xu JQ, Liu YW, Mu XD, et al., 2021. STAR-RISs: simultaneous transmitting and reflecting reconfigurable intelligent surfaces. IEEE Commun Lett, 25(9):3134-3138.

[43]Xu JQ, Liu YW, Mu XD, et al., 2022a. Simultaneously transmitting and reflecting intelligent omni-surfaces: modeling and implementation. IEEE Veh Technol Mag, 17(2):46-54.

[44]Xu JQ, Liu YW, Mu XD, et al., 2022b. STAR-RISs: a correlated T&R phase-shift model and practical phase-shift configuration strategies. IEEE J Sel Top Signal Process, 16(5):1097-1111.

[45]Xu JQ, Zuo JK, Zhou JT, et al., 2023a. Active simultaneously transmitting and reflecting (STAR)-RISs: modelling and analysis. IEEE Commun Lett, 27(9):2466-2470.

[46]Xu JQ, Mu XD, Liu YW, 2023b. Exploiting STAR-RISs in near-field communications. IEEE Trans Wirel Commun, early access.

[47]Xu JQ, Mu XD, Zhou JT, et al., 2023c. Simultaneously transmitting and reflecting (STAR)-RISs: are they applicable to dual-sided incidence? IEEE Wirel Commun Lett, 12(1):129-133.

[48]Yan WC, Hao WM, Huang CW, et al., 2023. Beamforming analysis and design for wideband THz reconfigurable intelligent surface communications. https://arxiv.org/abs/2207.11926

[49]Yang B, Cao XL, Xu JD, et al., 2023. Reconfigurable intelligent computational surfaces: when wave propagation control meets computing. IEEE Wirel Commun, 30(3):120-128.

[50]Yu XH, Xu DF, Sun Y, et al., 2020. Robust and secure wireless communications via intelligent reflecting surfaces. IEEE J Sel Areas Commun, 38(11):2637-2652.

[51]Yu XH, Xu DF, Ng DWK, et al., 2021. IRS-assisted green communication systems: provable convergence and robust optimization. IEEE Trans Commun, 69(9):6313-6329.

[52]Zhang C, Yi WQ, Liu YW, et al., 2022. STAR-IOS aided NOMA networks: channel model approximation and performance analysis. IEEE Trans Wirel Commun, 21(9):6861-6876.

[53]Zhang QQ, Saad W, Bennis M, 2019. Reflections in the sky: millimeter wave communication with UAV-carried intelligent reflectors. Proc IEEE Global Communications Conf, p.1-6.

[54]Zhang SH, Zhang HL, Di BY, et al., 2020. Beyond intelligent reflecting surfaces: reflective-transmissive metasurface aided communications for full-dimensional coverage extension. IEEE Trans Veh Technol, 69(11):13905-13909.

[55]Zhang SH, Zhang HL, Di BY, et al., 2021. Intelligent omni-surface: ubiquitous wireless transmission by reflective-transmissive metasurface. https://arxiv.org/abs/2011.00765

[56]Zhang SW, Zhang R, 2020. Capacity characterization for intelligent reflecting surface aided MIMO communication. IEEE J Sel Areas Commun, 38(8):1823-1838.

[57]Zhang Z, Wang ZL, Liu YW, et al., 2023. Security enhancement for coupled phase-shift STAR-RIS networks. IEEE Trans Veh Technol, 72(6):8210-8215.

[58]Zhang ZH, Sun Q, Zhang JY, et al., 2023. Ergodic capacity of intelligent omni-surface-aided communication systems with phase quantization errors and outdated CSI. IEEE Syst J, 17(2):1889-1898.

[59]Zheng BX, Wu QQ, Zhang R, 2020. Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA? IEEE Commun Lett, 24(4):753-757.

[60]Zhong RK, Liu YW, Mu XD, et al., 2022. Hybrid reinforcement learning for STAR-RISs: a coupled phase-shift model based beamformer. IEEE Int Conf on Communications, p.2840-2845.

[61]Zhu BO, Chen K, Jia N, et al., 2014. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Sci Rep, 4(1):4971.

[62]Zuo JK, Liu YW, Ding ZG, et al., 2023. Joint design for simultaneously transmitting and reflecting (STAR) RIS assisted NOMA systems. IEEE Trans Wirel Commun, 22(1):611-626.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE