Full Text:   <469>

Summary:  <83>

CLC number: TN928

On-line Access: 2025-05-06

Received: 2024-05-24

Revision Accepted: 2024-10-15

Crosschecked: 2025-05-06

Cited: 0

Clicked: 638

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ying WANG

https://orcid.org/0000-0002-4541-9169

Chenhao QI

https://orcid.org/0000-0002-7360-939X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.4 P.639-651

http://doi.org/10.1631/FITEE.2400433


Analog-only beamforming for near-field multiuser MIMO communications


Author(s):  Ying WANG, Chenhao QI

Affiliation(s):  School of Information Science and Engineering, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   wying@seu.edu.cn, qch@seu.edu.cn

Key Words:  Beam focusing, Beamforming, Majorization–, minimization, Multiuser communications, Near field


Ying WANG, Chenhao QI. Analog-only beamforming for near-field multiuser MIMO communications[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(4): 639-651.

@article{title="Analog-only beamforming for near-field multiuser MIMO communications",
author="Ying WANG, Chenhao QI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="4",
pages="639-651",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400433"
}

%0 Journal Article
%T Analog-only beamforming for near-field multiuser MIMO communications
%A Ying WANG
%A Chenhao QI
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 4
%P 639-651
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400433

TY - JOUR
T1 - Analog-only beamforming for near-field multiuser MIMO communications
A1 - Ying WANG
A1 - Chenhao QI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 4
SP - 639
EP - 651
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400433


Abstract: 
For near-field multiuser communications based on hybrid beamforming (HBF) architectures, high-quality effective channel estimation is required to obtain the channel state information (CSI) for the design of the digital beamformer. To simplify the system reconfiguration and eliminate the pilot overhead required by effective channel estimation, we consider an analog-only beamforming (AoBF) architecture in this study. AoBF is designed to maximize the sum rate, it is transformed into a problem maximizing the power transmitted to the target user equipment (UE) and meanwhile minimizing the power leaked to the other UEs. To solve this problem, we use beam focusing and beam nulling and propose two AoBF schemes based on the majorization–;minimization algorithm. First, the AoBF scheme based on perfect CSI is proposed, with the focus on beamforming performance and regardless of CSI acquisition. Then, the AoBF scheme based on imperfect CSI is proposed, where low-dimensional imperfect CSI is obtained by beam sweeping based on a near-field codebook. Simulation results demonstrate that the two AoBF schemes can approach HBF schemes in terms of the sum rate and outperform HBF schemes in terms of energy efficiency.

面向近场多用户多入多出通信的纯模拟波束成形研究

王莹1,2,戚晨皓1,2
1东南大学信息科学与工程学院,中国南京市,210096
2东南大学移动通信国家重点实验室,中国南京市,210096
摘要:在基于混合波束成形(HBF)架构的近场多用户通信系统中,高质量的等效信道估计是获取信道状态信息(CSI)以设计数字波束成形器的关键。为简化系统架构并完全消除等效信道估计所需的导频开销,本文提出一种基于纯模拟波束成形(AoBF)的架构。该方案以系统的和速率最大化为目标,将和速率最大化问题转化为目标用户功率最大化同时非目标用户功率最小化的问题。为解决该问题,使用波束聚焦和波束零陷进行纯模拟波束成形,并利用优化-最小化(MM)算法优化求解。本文提出两种AoBF方案:基于完美CSI的AoBF方案不考虑CSI获取方法的影响,重点关注AoBF替代HBF的可行性;基于非完美CSI的AoBF方案利用基于近场码本的波束扫描获得低维非完美CSI。仿真结果表明,两种AoBF方案的和速率性能可逼近HBF方案,且在能量效率方面优于HBF方案。

关键词:波束聚焦;波束成形;MM算法;多用户通信;近场

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmed I, Khammari H, Shahid A, et al., 2018. A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives. IEEE Commun Surv Tut, 20(4):3060-3097.

[2]Alkhateeb A, Leus G, Heath RW, 2015. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun, 14(11):6481-6494.

[3]Cao P, Thompson JS, Haas H, 2017. Constant modulus shaped beam synthesis via convex relaxation. IEEE Antenn Wirel Propag Lett, 16:617-620.

[4]Chen KJ, Qi CH, Li GY, et al., 2024. Near-field multiuser communications based on sparse arrays. IEEE J Sel Top Signal Process, 18(4):619-632.

[5]Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field? IEEE Trans Commun, 70(4):2663-2677.

[6]Cui MY, Dai LL, 2024. Near-field wideband beamforming for extremely large antenna arrays. IEEE Trans Wirel Commun, 23(10):13110-13124.

[7]Gong SQ, Xing CW, Lau VKN, et al., 2020. Majorization-minimization aided hybrid transceivers for MIMO interference channels. IEEE Trans Signal Process, 68:4903-4918.

[8]Gong TR, Gavriilidis P, Ji R, et al., 2024a. Holographic MIMO communications: theoretical foundations, enabling technologies, and future directions. IEEE Commun Surv Tut, 26(1):196-257.

[9]Gong TR, Wei L, Huang CW, et al., 2024b. Holographic MIMO communications with arbitrary surface placements: near-field LoS channel model and capacity limit. IEEE J Sel Areas Commun, 42(6):1549-1566.

[10]Gong TR, Wei L, Huang CW, et al., 2024c. Near-field channel modeling for holographic MIMO communications. IEEE Wirel Commun, 31(3):108-116.

[11]Jin X, Lv TJ, Ni W, et al., 2024. A reconfigurable subarray architecture and hybrid beamforming for millimeter-wave dual-function-radar-communication systems. IEEE Trans Wirel Commun, 23(10):12594-12607.

[12]Li LC, Pan CH, Zhi KD, et al., 2024. Transmission design for the XL-RIS-aided massive MIMO system with visibility regions. Front Inform Technol Electron Eng, 25(12):1679-1694.

[13]Liu Y, Xu K, Xia XC, et al., 2023. Joint power control and passive beamforming optimization in RIS-assisted anti-jamming communication. Front Inform Technol Electron Eng, 24(12):1791-1802.

[14]Mo JH, Alkhateeb A, Abu-Surra S, et al., 2017. Hybrid architectures with few-bit ADC receivers: achievable rates and energy-rate tradeoffs. IEEE Trans Wirel Commun, 16(4):2274-2287.

[15]Qi CH, Liu Q, Yu XH, et al., 2022. Hybrid precoding for mixture use of phase shifters and switches in mmWave massive MIMO. IEEE Trans Commun, 70(6):4121-4133.

[16]Qi CH, Hu JL, Du Y, et al., 2024. Multiuser beamforming for partially-connected millimeter wave massive MIMO. IEEE Trans Veh Technol, 73(4):5977-5981.

[17]Shen Y, Leng PF, Chen SY, et al., 2024. Phase-only transmit beampattern synthesis with maximum mainlobe gain via manifold ADMM. IEEE Antenn Wirel Propag Lett, 23(1):184-188.

[18]Sherman J, 1962. Properties of focused apertures in the Fresnel region. IRE Trans Antenn Propag, 10(4):399-408.

[19]Song JX, Babu P, Palomar DP, 2015. Optimization methods for designing sequences with low autocorrelation sidelobes. IEEE Trans Signal Process, 63(15):3998-4009.

[20]Sun XY, Qi CH, Li GY, 2019. Beam training and allocation for multiuser millimeter wave massive MIMO systems. IEEE Trans Wirel Commun, 18(2):1041-1053.

[21]Sun Y, Babu P, Palomar DP, 2017. Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans Signal Process, 65(3):794-816.

[22]Tian Z, Chen ZC, Wang M, et al., 2022. Reconfigurable intelligent surface empowered optimization for spectrum sharing: scenarios and methods. IEEE Veh Technol Mag, 17(2):74-82.

[23]Tian Z, Yao Y, Chen ZC, et al., 2024. Active reconfigurable intelligent surface-aided user-centric networks. IEEE Trans Veh Technol, 73(2):2930-2935.

[24]Wang J, Sun JY, Fang W, et al., 2024. Deep reinforcement learning for near-field wideband beamforming in STAR-RIS networks. Front Inform Technol Electron Eng, 25(12):1651-1663.

[25]Wang XH, Shu F, Chen RQ, et al., 2023. Beamforming design for RIS-aided amplify-and-forward relay networks. Front Inform Technol Electron Eng, 24(12):1728-1738.

[26]Wu LL, Babu P, Palomar DP, 2018. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints. IEEE Trans Signal Process, 66(6):1526-1540.

[27]Wu ZD, Dai LL, 2023. Multiple access for near-field communications: SDMA or LDMA? IEEE J Sel Areas Commun, 41(6):1918-1935.

[28]Yan LF, Han C, Yuan JH, 2020. A dynamic array-of-subarrays architecture and hybrid precoding algorithms for terahertz wireless communications. IEEE J Sel Areas Commun, 38(9):2041-2056.

[29]Yang LJ, Sun S, Sha WEI, et al., 2023. Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization. Front Inform Technol Electron Eng, 24(12):1776-1790.

[30]Yoon SG, Lee SJ, 2022. Improved hierarchical codebook-based channel estimation for mmWave massive MIMO systems. IEEE Wirel Commun Lett, 11(10):2095-2099.

[31]You CS, Zhang R, 2021. Wireless communication aided by intelligent reflecting surface: active or passive? IEEE Wirel Commun Lett, 10(12):2659-2663.

[32]Zhang HY, Shlezinger N, Guidi F, et al., 2022. Beam focusing for near-field multiuser MIMO communications. IEEE Trans Wirel Commun, 21(9):7476-7490.

[33]Zhang HY, Shlezinger N, Guidi F, et al., 2023. 6G wireless communications: from far-field beam steering to near-field beam focusing. IEEE Commun Mag, 61(4):72-77.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE