CLC number: TN928
On-line Access: 2025-05-06
Received: 2024-05-24
Revision Accepted: 2024-10-15
Crosschecked: 2025-05-06
Cited: 0
Clicked: 638
Citations: Bibtex RefMan EndNote GB/T7714
Ying WANG, Chenhao QI. Analog-only beamforming for near-field multiuser MIMO communications[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(4): 639-651.
@article{title="Analog-only beamforming for near-field multiuser MIMO communications",
author="Ying WANG, Chenhao QI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="4",
pages="639-651",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400433"
}
%0 Journal Article
%T Analog-only beamforming for near-field multiuser MIMO communications
%A Ying WANG
%A Chenhao QI
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 4
%P 639-651
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400433
TY - JOUR
T1 - Analog-only beamforming for near-field multiuser MIMO communications
A1 - Ying WANG
A1 - Chenhao QI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 4
SP - 639
EP - 651
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400433
Abstract: For near-field multiuser communications based on hybrid beamforming (HBF) architectures, high-quality effective channel estimation is required to obtain the channel state information (CSI) for the design of the digital beamformer. To simplify the system reconfiguration and eliminate the pilot overhead required by effective channel estimation, we consider an analog-only beamforming (AoBF) architecture in this study. AoBF is designed to maximize the sum rate, it is transformed into a problem maximizing the power transmitted to the target user equipment (UE) and meanwhile minimizing the power leaked to the other UEs. To solve this problem, we use beam focusing and beam nulling and propose two AoBF schemes based on the majorization–;minimization algorithm. First, the AoBF scheme based on perfect CSI is proposed, with the focus on beamforming performance and regardless of CSI acquisition. Then, the AoBF scheme based on imperfect CSI is proposed, where low-dimensional imperfect CSI is obtained by beam sweeping based on a near-field codebook. Simulation results demonstrate that the two AoBF schemes can approach HBF schemes in terms of the sum rate and outperform HBF schemes in terms of energy efficiency.
[1]Ahmed I, Khammari H, Shahid A, et al., 2018. A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives. IEEE Commun Surv Tut, 20(4):3060-3097.
[2]Alkhateeb A, Leus G, Heath RW, 2015. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun, 14(11):6481-6494.
[3]Cao P, Thompson JS, Haas H, 2017. Constant modulus shaped beam synthesis via convex relaxation. IEEE Antenn Wirel Propag Lett, 16:617-620.
[4]Chen KJ, Qi CH, Li GY, et al., 2024. Near-field multiuser communications based on sparse arrays. IEEE J Sel Top Signal Process, 18(4):619-632.
[5]Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field? IEEE Trans Commun, 70(4):2663-2677.
[6]Cui MY, Dai LL, 2024. Near-field wideband beamforming for extremely large antenna arrays. IEEE Trans Wirel Commun, 23(10):13110-13124.
[7]Gong SQ, Xing CW, Lau VKN, et al., 2020. Majorization-minimization aided hybrid transceivers for MIMO interference channels. IEEE Trans Signal Process, 68:4903-4918.
[8]Gong TR, Gavriilidis P, Ji R, et al., 2024a. Holographic MIMO communications: theoretical foundations, enabling technologies, and future directions. IEEE Commun Surv Tut, 26(1):196-257.
[9]Gong TR, Wei L, Huang CW, et al., 2024b. Holographic MIMO communications with arbitrary surface placements: near-field LoS channel model and capacity limit. IEEE J Sel Areas Commun, 42(6):1549-1566.
[10]Gong TR, Wei L, Huang CW, et al., 2024c. Near-field channel modeling for holographic MIMO communications. IEEE Wirel Commun, 31(3):108-116.
[11]Jin X, Lv TJ, Ni W, et al., 2024. A reconfigurable subarray architecture and hybrid beamforming for millimeter-wave dual-function-radar-communication systems. IEEE Trans Wirel Commun, 23(10):12594-12607.
[12]Li LC, Pan CH, Zhi KD, et al., 2024. Transmission design for the XL-RIS-aided massive MIMO system with visibility regions. Front Inform Technol Electron Eng, 25(12):1679-1694.
[13]Liu Y, Xu K, Xia XC, et al., 2023. Joint power control and passive beamforming optimization in RIS-assisted anti-jamming communication. Front Inform Technol Electron Eng, 24(12):1791-1802.
[14]Mo JH, Alkhateeb A, Abu-Surra S, et al., 2017. Hybrid architectures with few-bit ADC receivers: achievable rates and energy-rate tradeoffs. IEEE Trans Wirel Commun, 16(4):2274-2287.
[15]Qi CH, Liu Q, Yu XH, et al., 2022. Hybrid precoding for mixture use of phase shifters and switches in mmWave massive MIMO. IEEE Trans Commun, 70(6):4121-4133.
[16]Qi CH, Hu JL, Du Y, et al., 2024. Multiuser beamforming for partially-connected millimeter wave massive MIMO. IEEE Trans Veh Technol, 73(4):5977-5981.
[17]Shen Y, Leng PF, Chen SY, et al., 2024. Phase-only transmit beampattern synthesis with maximum mainlobe gain via manifold ADMM. IEEE Antenn Wirel Propag Lett, 23(1):184-188.
[18]Sherman J, 1962. Properties of focused apertures in the Fresnel region. IRE Trans Antenn Propag, 10(4):399-408.
[19]Song JX, Babu P, Palomar DP, 2015. Optimization methods for designing sequences with low autocorrelation sidelobes. IEEE Trans Signal Process, 63(15):3998-4009.
[20]Sun XY, Qi CH, Li GY, 2019. Beam training and allocation for multiuser millimeter wave massive MIMO systems. IEEE Trans Wirel Commun, 18(2):1041-1053.
[21]Sun Y, Babu P, Palomar DP, 2017. Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans Signal Process, 65(3):794-816.
[22]Tian Z, Chen ZC, Wang M, et al., 2022. Reconfigurable intelligent surface empowered optimization for spectrum sharing: scenarios and methods. IEEE Veh Technol Mag, 17(2):74-82.
[23]Tian Z, Yao Y, Chen ZC, et al., 2024. Active reconfigurable intelligent surface-aided user-centric networks. IEEE Trans Veh Technol, 73(2):2930-2935.
[24]Wang J, Sun JY, Fang W, et al., 2024. Deep reinforcement learning for near-field wideband beamforming in STAR-RIS networks. Front Inform Technol Electron Eng, 25(12):1651-1663.
[25]Wang XH, Shu F, Chen RQ, et al., 2023. Beamforming design for RIS-aided amplify-and-forward relay networks. Front Inform Technol Electron Eng, 24(12):1728-1738.
[26]Wu LL, Babu P, Palomar DP, 2018. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints. IEEE Trans Signal Process, 66(6):1526-1540.
[27]Wu ZD, Dai LL, 2023. Multiple access for near-field communications: SDMA or LDMA? IEEE J Sel Areas Commun, 41(6):1918-1935.
[28]Yan LF, Han C, Yuan JH, 2020. A dynamic array-of-subarrays architecture and hybrid precoding algorithms for terahertz wireless communications. IEEE J Sel Areas Commun, 38(9):2041-2056.
[29]Yang LJ, Sun S, Sha WEI, et al., 2023. Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization. Front Inform Technol Electron Eng, 24(12):1776-1790.
[30]Yoon SG, Lee SJ, 2022. Improved hierarchical codebook-based channel estimation for mmWave massive MIMO systems. IEEE Wirel Commun Lett, 11(10):2095-2099.
[31]You CS, Zhang R, 2021. Wireless communication aided by intelligent reflecting surface: active or passive? IEEE Wirel Commun Lett, 10(12):2659-2663.
[32]Zhang HY, Shlezinger N, Guidi F, et al., 2022. Beam focusing for near-field multiuser MIMO communications. IEEE Trans Wirel Commun, 21(9):7476-7490.
[33]Zhang HY, Shlezinger N, Guidi F, et al., 2023. 6G wireless communications: from far-field beam steering to near-field beam focusing. IEEE Commun Mag, 61(4):72-77.
Open peer comments: Debate/Discuss/Question/Opinion
<1>