CLC number: TN929.5
On-line Access: 2025-02-10
Received: 2024-04-10
Revision Accepted: 2024-08-08
Crosschecked: 2025-02-18
Cited: 0
Clicked: 631
Citations: Bibtex RefMan EndNote GB/T7714
Haiquan LU, Yong ZENG. Near-field secure wireless communication with delay alignment modulation[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(1): 134-145.
@article{title="Near-field secure wireless communication with delay alignment modulation",
author="Haiquan LU, Yong ZENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="1",
pages="134-145",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400271"
}
%0 Journal Article
%T Near-field secure wireless communication with delay alignment modulation
%A Haiquan LU
%A Yong ZENG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 1
%P 134-145
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400271
TY - JOUR
T1 - Near-field secure wireless communication with delay alignment modulation
A1 - Haiquan LU
A1 - Yong ZENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 1
SP - 134
EP - 145
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400271
Abstract: delay alignment modulation (DAM) is recently proposed as an effective technique to address the inter-symbol interference (ISI) issue, which circumvents the conventional channel equalization and multi-carrier transmission. Moreover, wireless communications are vulnerable to malicious eavesdropping and attacks due to their inherent open and broadcast nature. In particular, DAM not only eliminates the ISI at the desired receiver but may also introduce ISI to other locations, and thus is quite promising for secure communications. This paper considers the near-field secure wireless communication with DAM. To gain useful insights, it is first shown that when the antenna number of Alice is much larger than the number of multipaths for Bob and Eve, the delay compensation and low-complexity path-based maximal-ratio transmission (MRT) beamforming achieve a communication free of ISI and information leakage, owing to the asymptotically orthogonal property brought by the near-field nonuniform spherical wave (NUSW). The secrecy rate performance of path-based zero-forcing (ZF) beamforming toward ISI-free communication is then evaluated. Furthermore, the path-based optimized DAM beamforming scheme is proposed to maximize the secrecy rate, by considering the general case in the presence of some tolerable ISI. As a comparison, the benchmarking scheme of the artificial noise (AN) based orthogonal frequency-division multiplexing (OFDM) is considered. Simulation results show that DAM achieves a higher secrecy rate and lower peak-to-average-power ratio (PAPR) than the AN-based OFDM.
[1]Chen JG, Xiao Y, Liu KL, et al., 2024. Physical layer security for near-field communications via directional modulation. IEEE Trans Veh Technol, 73(8):12242-12246.
[2]Cheng YJ, Huang CW, Peng W, et al., 2024. Achievable rate optimization of the RIS-aided near-field wideband uplink. IEEE Trans Wirel Commun, 23(3):2296-2311.
[3]Cui M, Zhang GC, Zhang R, 2019. Secure wireless communication via intelligent reflecting surface. IEEE Wirel Commun Lett, 8(5):1410-1414.
[4]Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field? IEEE Trans Commun, 70(4):2663-2677.
[5]Ding DY, Zeng Y, Wang DM, 2024. Channel estimation for delay alignment modulation. IEEE Wireless Communications and Networking Conf, p.1-6.
[6]Dong L, Han Z, Petropulu AP, et al., 2010. Improving wireless physical layer security via cooperating relays. IEEE Trans Signal Process, 58(3):1875-1888.
[7]Dong ZJ, Zeng Y, 2022. Near-field spatial correlation for extremely large-scale array communications. IEEE Commun Lett, 26(7):1534-1538.
[8]Ferreira J, Guerreiro J, Dinis R, 2024. Physical layer security with near-field beamforming. IEEE Access, 12:4801-4811.
[9]Goldsmith A, 2005. Wireless Communications. Cambridge University Press, Cambridge, UK.
[10]Gong TR, Wei L, Huang CW, et al., 2024. Holographic MIMO communications with arbitrary surface placements: near-field LoS channel model and capacity limit. IEEE J Sel Areas Commun, 42(6):1549-1566.
[11]Hao WM, Shi H, Sun GC, et al., 2023. Joint beamforming design for active RIS-aided THz ISAC systems with delay alignment modulation. IEEE Wirel Commun Lett, 12(10):1816-1820.
[12]Hong T, Song MZ, Liu Y, 2011. Dual-beam directional modulation technique for physical-layer secure communication. IEEE Antenn Wirel Propag Lett, 10:1417-1420.
[13]Illi E, Qaraqe M, El Bouanani F, et al., 2024. Enhancing physical layer security with reconfigurable intelligent surfaces and friendly jamming: a secrecy analysis. Comput Commun, 221:106-119.
[14]Li XR, Dong ZJ, Zeng Y, et al., 2024. Multi-user modular XL-MIMO communications: near-field beam focusing pattern and user grouping. IEEE Trans Wirel Commun, 23(10):13766-13781.
[15]Liu Y, Xu K, Xia X, et al., 2023. Joint power control and passive beamforming optimization in RIS-assisted anti-jamming communication. Front Inform Technol Electron Eng, 24(12):1791-1802.
[16]Liu YW, Xu JQ, Wang ZL, et al., 2023. Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions. Front Inform Technol Electron Eng, 24(12):1689-1707.
[17]Lu HQ, Zeng Y, 2022a. Communicating with extremely large-scale array/surface: unified modeling and performance analysis. IEEE Trans Wirel Commun, 21(6):4039-4053.
[18]Lu HQ, Zeng Y, 2022b. Delay alignment modulation: enabling equalization-free single-carrier communication. IEEE Wirel Commun Lett, 11(9):1785-1789.
[19]Lu HQ, Zeng Y, 2023. Delay alignment modulation: manipulating channel delay spread for efficient single- and multi-carrier communication. IEEE Trans Commun, 71(11):6316-6331.
[20]Lu HQ, Zeng Y, 2024. Delay-Doppler alignment modulation for spatially sparse massive MIMO communication. IEEE Trans Wirel Commun, 23(6):6000-6014.
[21]Lu HQ, Zeng Y, Jin S, et al., 2024a. Single-carrier delay alignment modulation for multi-IRS aided communication. IEEE Trans Wirel Commun, 23(4):3267-3282.
[22]Lu HQ, Zeng Y, You CS, et al., 2024b. A tutorial on near-field XL-MIMO communications towards 6G. IEEE Commun Surv Tut, 26(4):2213-2257.
[23]Mukherjee A, Fakoorian SAA, Huang J, et al., 2014. Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun Surv Tut, 16(3):1550-1573.
[24]Romero-Zurita N, Ghogho M, McLernon D, 2011. Physical layer security of MIMO frequency selective channels by beamforming and noise generation. IEEE 19th European Signal Processing Conf, p.829-833.
[25]Sun GC, Shi H, Shang BL, et al., 2024. Secure transmission for active RIS-assisted THz ISAC systems with delay alignment modulation. IEEE Commun Lett, 28(5):1019-1023.
[26]Wang XW, Lu HQ, Zeng Y, 2023. Multi-user delay alignment modulation for millimeter wave massive MIMO. IEEE Global Communications Conf, p.6970-6975.
[27]Wang ZL, Mu XD, Liu YW, 2024. Bidirectional integrated sensing and communication: full-duplex or half-duplex? IEEE Trans Wirel Commun, 23(8):8184-8199.
[28]Wei L, Huang CW, Alexandropoulos GC, et al., 2023. Tri-polarized holographic MIMO surfaces for near-field communications: channel modeling and precoding design. IEEE Trans Wirel Commun, 22(12):8828-8842.
[29]Xiao ZQ, Zeng Y, 2023. Integrated sensing and communication with delay alignment modulation: performance analysis and beamforming optimization. IEEE Trans Wirel Commun, 22(12):8904-8918.
[30]Yang N, Wang LF, Geraci G, et al., 2015. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun Mag, 53(4):20-27.
[31]Zeng Y, Yang L, Zhang R, 2018. Multi-user millimeter wave MIMO with full-dimensional lens antenna array. IEEE Trans Wirel Commun, 17(4):2800-2814.
[32]Zeng Y, Wu QQ, Zhang R, 2019. Accessing from the sky: a tutorial on UAV communications for 5G and beyond. Proc IEEE, 107(12):2327-2375.
[33]Zhang GC, Wu QQ, Cui M, et al., 2019. Securing UAV communications via joint trajectory and power control. IEEE Trans Wirel Commun, 18(2):1376-1389.
[34]Zhang HY, Shlezinger N, Guidi F, et al., 2022. Beam focusing for near-field multiuser MIMO communications. IEEE Trans Wirel Commun, 21(9):7476-7490.
[35]Zhang JN, Zeng Y, 2024. Delay alignment modulation with hybrid beamforming for spatially sparse communications. IEEE Wireless Communications and Networking Conf, p.1-6.
[36]Zhou G, Pan CH, Ren H, et al., 2021. Secure wireless communication in RIS-aided MISO system with hardware impairments. IEEE Wirel Commun Lett, 10(6):1309-1313.
[37]Zhou XY, McKay MR, 2010. Secure transmission with artificial noise over fading channels: achievable rate and optimal power allocation. IEEE Trans Veh Technol, 59(8):3831-3842.
[38]Zhu J, Schober R, Bhargava VK, 2014. Secure transmission in multicell massive MIMO systems. IEEE Trans Wirel Commun, 13(9):4766-4781.
[39]Zou YL, Zhu J, Wang XB, et al., 2016. A survey on wireless security: technical challenges, recent advances, and future trends. Proc IEEE, 104(9):1727-1765.
Open peer comments: Debate/Discuss/Question/Opinion
<1>