Full Text:   <15>

Summary:  <10>

CLC number: TN929.5

On-line Access: 2025-01-24

Received: 2024-07-08

Revision Accepted: 2024-10-25

Crosschecked: 2025-01-24

Cited: 0

Clicked: 22

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jian-hua Zhang

https://orcid.org/0000-0002-6492-3846

Ping ZHANG

https://orcid.org/0000-0002-1485-5849

Yajun ZHAO

https://orcid.org/0000-0001-8823-5282

Long LI

https://orcid.org/0000-0003-0472-7314

Linglong DAI

https://orcid.org/0000-0002-4250-7315

Chongwen HUANG

https://orcid.org/0000-0001-8398-8437

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.12 P.1581-1627

http://doi.org/10.1631/FITEE.2400576


Near-field communications: characteristics, technologies, and engineering


Author(s):  Yajun ZHAO, Linglong DAI, Jianhua ZHANG, Ran JI, Mengnan JIAN, Hao XUE, Hongkang YU, Yunqi SUN, Yu LU, Zidong WU, Zhuo XU, Jinke LI, Haiyang MIAO, Zhiqiang YUAN, Pan TANG, Jiayu SHEN, Tierui GONG, Haixia LIU, Jiaqi HAN, Qiang FENG, Zhi CHEN, Lingxiang LI, Gang YANG, Yong ZENG, Cunhua PAN, Wang LIU, Kangda ZHI, Weidong HU, Yuanwei LIU, Xidong MU, Chau YUEN, Mérouane DEBBAH, Chongwen HUANG, Long LI, Ping ZHANG

Affiliation(s):  State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen 518055, China; more

Corresponding email(s):   zhao.yajun1@zte.com.cn, daill@tsinghua.edu.cn, jhzhang@bupt.edu.cn, chongwenhuang@zju.edu.cn, lilong@mail.xidian.edu.cn, pzhang@bupt.edu.cn

Key Words:  6G, Near-field technology, Channel model, Codebook, Non-diffractive beams, Orbital angular momentum, Engineering and standardization


Yajun ZHAO, Linglong DAI, Jianhua ZHANG, Ran JI, Mengnan JIAN, Hao XUE, Hongkang YU, Yunqi SUN, Yu LU, Zidong WU, Zhuo XU, Jinke LI, Haiyang MIAO, Zhiqiang YUAN, Pan TANG, Jiayu SHEN, Tierui GONG, Haixia LIU, Jiaqi HAN, Qiang FENG, Zhi CHEN, Lingxiang LI, Gang YANG, Yong ZENG, Cunhua PAN, Wang LIU, Kangda ZHI, Weidong HU, Yuanwei LIU, Xidong MU, Chau YUEN, Mérouane DEBBAH, Chongwen HUANG, Long LI, Ping ZHANG. Near-field communications: characteristics, technologies, and engineering[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(12): 1581-1627.

@article{title="Near-field communications: characteristics, technologies, and engineering",
author="Yajun ZHAO, Linglong DAI, Jianhua ZHANG, Ran JI, Mengnan JIAN, Hao XUE, Hongkang YU, Yunqi SUN, Yu LU, Zidong WU, Zhuo XU, Jinke LI, Haiyang MIAO, Zhiqiang YUAN, Pan TANG, Jiayu SHEN, Tierui GONG, Haixia LIU, Jiaqi HAN, Qiang FENG, Zhi CHEN, Lingxiang LI, Gang YANG, Yong ZENG, Cunhua PAN, Wang LIU, Kangda ZHI, Weidong HU, Yuanwei LIU, Xidong MU, Chau YUEN, Mérouane DEBBAH, Chongwen HUANG, Long LI, Ping ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="12",
pages="1581-1627",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400576"
}

%0 Journal Article
%T Near-field communications: characteristics, technologies, and engineering
%A Yajun ZHAO
%A Linglong DAI
%A Jianhua ZHANG
%A Ran JI
%A Mengnan JIAN
%A Hao XUE
%A Hongkang YU
%A Yunqi SUN
%A Yu LU
%A Zidong WU
%A Zhuo XU
%A Jinke LI
%A Haiyang MIAO
%A Zhiqiang YUAN
%A Pan TANG
%A Jiayu SHEN
%A Tierui GONG
%A Haixia LIU
%A Jiaqi HAN
%A Qiang FENG
%A Zhi CHEN
%A Lingxiang LI
%A Gang YANG
%A Yong ZENG
%A Cunhua PAN
%A Wang LIU
%A Kangda ZHI
%A Weidong HU
%A Yuanwei LIU
%A Xidong MU
%A Chau YUEN
%A Mérouane DEBBAH
%A Chongwen HUANG
%A Long LI
%A Ping ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 12
%P 1581-1627
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400576

TY - JOUR
T1 - Near-field communications: characteristics, technologies, and engineering
A1 - Yajun ZHAO
A1 - Linglong DAI
A1 - Jianhua ZHANG
A1 - Ran JI
A1 - Mengnan JIAN
A1 - Hao XUE
A1 - Hongkang YU
A1 - Yunqi SUN
A1 - Yu LU
A1 - Zidong WU
A1 - Zhuo XU
A1 - Jinke LI
A1 - Haiyang MIAO
A1 - Zhiqiang YUAN
A1 - Pan TANG
A1 - Jiayu SHEN
A1 - Tierui GONG
A1 - Haixia LIU
A1 - Jiaqi HAN
A1 - Qiang FENG
A1 - Zhi CHEN
A1 - Lingxiang LI
A1 - Gang YANG
A1 - Yong ZENG
A1 - Cunhua PAN
A1 - Wang LIU
A1 - Kangda ZHI
A1 - Weidong HU
A1 - Yuanwei LIU
A1 - Xidong MU
A1 - Chau YUEN
A1 - Mérouane DEBBAH
A1 - Chongwen HUANG
A1 - Long LI
A1 - Ping ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 12
SP - 1581
EP - 1627
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400576


Abstract: 
near-field technology is increasingly recognized due to its transformative potential in communication systems, establishing it as a critical enabler for sixth-generation (6G) telecommunication development. This paper presents a comprehensive survey of recent advancements in near-field technology research. First, we explore the near-field propagation fundamentals by detailing definitions, transmission characteristics, and performance analysis. Next, we investigate various near-field channel models—deterministic, stochastic, and electromagnetic information theory based models, and review the latest progress in near-field channel testing, highlighting practical performance and limitations. With evolving channel models, traditional mechanisms such as channel estimation, beamtraining, and codebook design require redesign and optimization to align with near-field propagation characteristics. We then introduce innovative beam designs enabled by near-field technologies, focusing on non-diffractive beams (such as Bessel and Airy) and orbital angular momentum (OAM) beams, addressing both hardware architectures and signal processing frameworks, showcasing their revolutionary potential in near-field communication systems. Additionally, we highlight progress in both engineering and standardization, covering the primary 6G spectrum allocation, enabling technologies for near-field propagation, and network deployment strategies. Finally, we conclude by identifying promising future research directions for near-field technology development that could significantly impact system design. This comprehensive review provides a detailed understanding of the current state and potential of near-field technologies.

近场通信:基础特性、关键技术与工程化应用

赵亚军1,2,戴凌龙3,张建华4,季然5,菅梦楠1,2,薛皓6,7,禹宏康1,2,孙韵淇1,2,陆宇3,吴梓栋3,徐卓3,李金珂3,缪海烊4,袁志强4,唐盼4,沈嘉宇5,宫铁瑞5,刘海霞6,7,韩家奇6,7,冯强6,7,陈智8,李玲香8,杨刚8,曾勇9,10,潘存华9,刘望9,支康达11,胡伟东12,刘元玮13,慕熹东14,严超15,Mérouane DEBBAH16,黄崇文5,李龙6,7,张平4
1移动网络和移动多媒体技术国家重点实验室,中国深圳市,518055
2中兴通讯股份有限公司,中国北京市,100192
3清华大学电子工程系,中国北京市,100084
4北京邮电大学网络与交换技术国家重点实验室,中国北京市,100876
5浙江大学信息科学与电子工程学院,中国杭州市,310007
6西安电子科技大学电子工程学院超高速电路设计与电磁兼容教育部重点实验室,中国西安市,710071
7西安电子科技大学信息感知技术协同创新中心,中国西安市,710071
8电子科技大学通信抗干扰全国重点实验室,中国成都市,611731
9东南大学移动通信全国重点实验室,中国南京市,210096
10紫金山实验室,中国南京市,211111
11柏林工业大学电气工程与计算机科学学院,德国柏林市,10623
12北京理工大学集成电路与电子学院,中国北京市,100081
13香港大学电机电子工程系,中国香港特别行政区
14英国贝尔法斯特女王大学电子、电气工程和计算机科学学院无线创新中心,英国贝尔法斯特,BT3 9DT15南洋理工大学电气与电子工程学院,新加坡,639798
16哈利法科学技术大学KU 6G研究中心,阿拉伯联合酋长国阿布扎比
摘要:近场技术因其对通信系统的变革性潜力而日益受到认可,成为推动第六代(6G)系统发展的关键技术。本文全面综述了近场技术研究的最新进展。首先,深入探讨了近场传播的基本原理,详细阐述了其定义、传输特性和性能分析。接着,研究了各种近场信道模型,包括确定性模型、随机性模型和基于电磁信息理论的模型,并回顾了近场信道测试的最新进展,重点介绍了实际性能及其局限性。随着信道模型的不断发展,传统的信道估计、波束训练、码本设计等机制需要重新设计和优化,以适应近场传播特性。随后,介绍了近场技术所支持的新型波束设计,重点讨论了非衍射波束(如贝塞尔波束和艾里波束)和轨道角动量(OAM)波束,同时涉及硬件架构和信号处理框架,展示了它们在近场通信系统中的革命性潜力。此外,强调了工程和标准化方面的进展,涵盖了6G的主要频谱分配、支持近场传播的关键技术以及网络部署策略。最后,总结了近场技术发展的未来研究方向,这些方向有望对系统设计产生重大影响。这篇综述文章提供了对近场技术当前状态和未来潜力的深入理解。

关键词:6G;近场技术;信道模型;码本;非衍射波束;轨道角动量;工程与标准化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP, 2023. RP-234018, Channel Modelling Enhancements for 7-24 GHz. https://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_102/Docs/RP-234018.zip

[2]Abdou A, 2023. Super-Airy beams. Opt Expr, 31(24):‍39447-39453.

[3]Basar E, 2018. Orbital angular momentum with index modulation. IEEE Trans Wirel Commun, 17(3):2029-2037.

[4]Björnson E, Demir ÖT, Sanguinetti L, 2021. A primer on near-field beamforming for arrays and reconfigurable intelligent surfaces. Proc 55th Asilomar Conf on Signals, Systems, and Computers, p.105-112.

[5]Bohagen F, Orten P, Oien GE, 2009. On spherical vs. plane wave modeling of line-of-sight MIMO channels. IEEE Trans Commun, 57(3):841-849.

[6]Cai XS, Fan W, Yin XF, et al., 2020. Trajectory-aided maximum-likelihood algorithm for channel parameter estimation in ultrawideband large-scale arrays. IEEE Trans Antenn Propag, 68(10):7131-7143.

[7]Cao Y, Wang P, Zheng K, et al., 2023. Experimental performance evaluation of cell-free massive MIMO systems using COTS RRU with OTA reciprocity calibration and phase synchronization. IEEE J Sel Areas Commun, 41(6):1620-1634.

[8]Chen H, Elzanaty A, Ghazalian R, et al., 2022. Channel model mismatch analysis for XL-MIMO systems from a localization perspective. IEEE Global Communications Conf, p.1588-1593.

[9]Chen KJ, Qi CH, Wang CX, et al., 2024. Beam training and tracking for extremely large-scale MIMO communications. IEEE Trans Wirel Commun, 23(5):5048-5062.

[10]Chen R, Long WX, Wang XD, et al., 2020. Multi-mode OAM radio waves: generation, angle of arrival estimation and reception with UCAs. IEEE Trans Wirel Commun, 19(10):6932-6947.

[11]Chen YB, Wang Y, Wang ZC, et al., 2024. Angular-distance based channel estimation for holographic MIMO. IEEE J Sel Areas Commun, 42(6):1684-1702.

[12]Cheng Q, Jin S, Cui TJ, 2023. Reconfigurable intelligent surfaces for wireless communications. Front Inform Technol Electron Eng, 24(12):1665-1668.

[13]Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field?IEEE Trans Commun, 70(4):2663-2677.

[14]Cui MY, Dai LL, 2024. Near-field wideband beamforming for extremely large antenna arrays. IEEE Trans Wirel Commun, 23(10):13110-13124.

[15]Cui MY, Wu ZD, Lu Y, et al., 2023a. Near-field MIMO communications for 6G: fundamentals, challenges, potentials, and future directions. IEEE Commun Mag, 61(1):40-46.

[16]Cui MY, Dai LL, Wang ZC, et al., 2023b. Near-field rainbow: wideband beam training for XL-MIMO. IEEE Trans Wirel Commun, 22(6):3899-3912.

[17]Cui TJ, Jin S, Zhang JY, et al., 2021. Research Report on Reconfigurable Intelligent Surface Technology (in Chinese). IMT-2030 (6G) Promotion Group, Beijing, China.https://www.imt2030.org.cn/html//default/zhongwen/chengguofabu/yanjiubaogao/list-7.‍html?index=2

[18]Cui Z, Liu J, Yang G, 2024. XL-RIS empowered near-field physical layer security against jamming and eavesdropping attacks. Front Inform Technol Electron Eng, 25(12):‍1750-1758.

[19]Demir ÖT, Björnson E, Sanguinetti L, 2022. Channel modeling and channel estimation for holographic massive MIMO with planar arrays. IEEE Wirel Commun Lett, 11(5):‍997-1001.

[20]Dong ZJ, Zeng Y, 2022. Near-field spatial correlation for extremely large-scale array communications. IEEE Commun Lett, 26(7):1534-1538.

[21]ETSI, 2020. ETSI TR 138 901 V16.1.0 (2020-11), Study on Channel Model for Frequencies from 0.5 to 100 GHz. V16.1.0. Technical Report 38.901 (3GPP TR 38.901 version 16.1.0 Release16). https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/16.01.00_60/tr_138901v160100p.pdf

[22]Ettorre M, Pavone SC, Casaletti M, et al., 2018. Near-field focusing by non-diffracting Bessel beams. In: Boriskin A, Sauleau R (Eds.), Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications. Springer, Cham, p.243-288.

[23]Fan JB, Chen R, Long WX, et al., 2021. Radio-frequency multi-mode OAM detection based on UCA samples learning. Proc IEEE 22nd Int Workshop on Signal Processing Advances in Wireless Communications, p.56-60.

[24]Feng C, Lu HQ, Zeng Y, et al., 2023. Near-field modeling and performance analysis for extremely large-scale IRS communications. IEEE Trans Wirel Commun, 23(5):‍4976-4989.

[25]Feng Q, Kong XD, Shan MM, et al., 2022. Multi-orbital-angular-momentum-mode vortex wave multiplexing and demultiplexing with shared-aperture reflective metasurfaces. Phys Rev Appl, 17(3):0340171.

[26]Franceschetti M, Migliore MD, Minero P, et al., 2015. The information carried by scattered waves: near-field and nonasymptotic regimes. IEEE Trans Antenn Propag, 63(7):3144-3157.

[27]Fuschini F, Zoli M, Vitucci EM, et al., 2019. A study on millimeter-wave multiuser directional beamforming based on measurements and ray tracing simulations. IEEE Trans Antenn Propag, 67(4):2633-2644.

[28]Gao HQ, Kyösti P, Zhang X, et al., 2023. Digital twin enabled 6G radio testing: concepts, challenges and solutions. IEEE Commun Mag, 61(12):88-94.

[29]Gao S, Dong PH, Pan ZW, et al., 2024. Lightweight deep learning based channel estimation for extremely large-scale massive MIMO systems. IEEE Trans Veh Technol, 73(7):10750-10754.

[30]Gao TY, Tang P, Tian L, et al., 2023. A 3GPP-like channel simulation framework considering near-field spatial non-stationary characteristics of massive MIMO. IEEE Globecom Workshops, p.1493-1498.

[31]Gong TR, Wei L, Yang ZJ, et al., 2023a. A generalized electromagnetic-domain channel modeling for LOS holographic MIMO with arbitrary surface placements. IEEE Int Conf on Communications Workshops, p.1222-1227.

[32]Gong TR, Wei L, Huang CW, et al., 2023b. Holographic MIMO communications with arbitrary surface placements: near-field LoS channel model and capacity limit. IEEE J Sel Areas Commun, 42(6):1549-1566.

[33]Gong TR, Gavriilidis P, Ji R, et al., 2023c. Holographic MIMO communications: theoretical foundations, enabling technologies, and future directions. IEEE Commun Surv Tut, 26(1):196-257.

[34]Gong TR, Huang CW, He JG, et al., 2023d. A transmit-receive parameter separable electromagnetic channel model for LoS holographic MIMO. Proc IEEE Global Communications Conf, p.5701-5706.

[35]Gürgünoğlu D, Björnson E, Fodor G, 2024. Combating inter-operator pilot contamination in reconfigurable intelligent surfaces assisted multi-operator networks. IEEE Trans Commun, 72(9):5884-5895.

[36]Han C, Bicen AO, Akyildiz IF, 2015. Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band. IEEE Trans Wirel Commun, 14(5):2402-2412.

[37]Han C, Chen YH, Yan LF, et al., 2024. Cross far- and near-field wireless communications in terahertz ultra-large antenna array systems. IEEE Wirel Commun, 31(3):‍148-154.

[38]Han JQ, Li L, Yi H, et al., 2018. Versatile orbital angular momentum vortex beam generator based on reconfigurable reflective metasurface. Jpn J Appl Phys, 57(12):120303.

[39]Han Y, Jin S, Wen CK, et al., 2020. Channel estimation for extremely large-scale massive MIMO systems. IEEE Wirel Commun Lett, 9(5):633-637.

[40]Haneda K, Takada JI, Kobayashi T, 2006. A parametric UWB propagation channel estimation and its performance validation in an anechoic chamber. IEEE Trans Microw Theory Technol, 54(4):1802-1811.

[41]Hu S, Ilter MC, Wang H, 2022. Near-field beamforming for large intelligent surfaces. IEEE 33rd Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1367-1373.

[42]Hu XY, Zhang Y, Yang LX, et al., 2024. Securing near-field wideband MIMO communications via true-time delayer-based hybrid beamfocusing. IEEE Trans Wirel Commun, 23(10):13562-13578.

[43]Hu ZL, Ye QB, Huang YX, et al., 2024. Joint range-velocity-azimuth estimation for OFDM-based integrated sensing and communication. IEEE Trans Wirel Commun, 23(10):12933-12948.

[44]Huawei, 2009a. R1-092364 Consideration on CSI-RS Design for CoMP and Text Proposal to 36.814. https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_57b/Docs/R1-092364.zip

[45]Huawei, 2009b. R1-093031 Consideration on CSI-RS Design for CoMP and Text Proposal to 36.814. https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_58/Docs/R1-093031.zip

[46]IMT-2030 (6G) Promotion Group, 2022. 6G Typical Scenarios and Key Capabilities White Paper (in Chinese). https://www.imt2030.org.cn/html/default/zhongwen/cheng‍guofabu/baipishu/index.html?index=2

[47]ITU, 2023. WRC-23 Booklet: Agenda and Relevant Resolutions.https://www.itu.int/wrc-23/booklet-wrc-23/

[48]ITU-R WP5D, 2023. Framework and Overall Objectives of the Future Development of IMT for 2030 and Beyond. https://www.‍itu.‍int/rec/R-REC-M.‍2160/en

[49]Ji R, Chen S, Huang CW, et al., 2023. Extra DoF of near-field holographic MIMO communications leveraging evanescent waves. IEEE Wirel Commun Lett, 12(4):580-584.

[50]Jiang JS, Ingram MA, 2005. Spherical-wave model for short-range MIMO. IEEE Trans Commun, 53(9):1534-1541.

[51]Jiang YH, Gao FF, 2023. Electromagnetic channel model for near field MIMO systems in the half space. IEEE Commun Lett, 27(2):706-710.

[52]Kadlimatti R, Parimi PV, 2019. Millimeter-wave nondiffracting circular Airy OAM beams. IEEE Trans Antenn Propag, 67(1):260-269.

[53]Karstensen A, Fan W, Carton I, et al., 2016. Comparison of ray tracing simulations and channel measurements at mmWave bands for indoor scenarios. 10th European Conf on Antennas and Propagation, p.1-5.

[54]Khonina SN, Kazanskiy NL, Karpeev SV, et al., 2020. Bessel beam: significance and applications—a progressive review. Micromachines, 11(11):997.

[55]Lee A, Ju H, Kim S, et al., 2022. Intelligent near-field channel estimation for terahertz ultra-massive MIMO systems. Global Communications Conf, p.5390-5395.

[56]Lee D, Sasaki H, Yagi Y, et al., 2023. Orbital angular momentum multiplexing using radio wave and its extension to multishape radio. J Lightw Technol, 41(7):1985-1996.

[57]Lei H, Zhang JY, Xiao HH, et al., 2024. Channel estimation for XL-MIMO systems with polar-domain multi-scale residual dense network. IEEE Trans Veh Technol, 73(1):1479-1484.

[58]Li BQ, Zhu X, Jiang YF, et al., 2022. Cooperative time synchronization and parameter estimation via broadcasting for cell-free massive MIMO networks. Proc IEEE Wireless Communications and Networking Conf, p.2100-2105.

[59]Li JZ, Ai B, He RS, et al., 2018. The 3D spatial non-stationarity and spherical wavefront in massive MIMO channel measurement. Proc 10th Int Conf on Wireless Communications and Signal Processing, p.1-6.

[60]Li L, Xue H, Feng Q, 2018. Research progresses in theory and applications of vortex electromagnetic waves. J Microw, 34(2):1-12 (in Chinese).

[61]Li L, Zhang R, Cui TJ, 2023. Information metasurfaces and reconfigurable intelligent surfaces. J Inform Intell, 1(3):179-181.

[62]Li MT, Yuan ZQ, Lyu YJ, et al., 2023. Gigantic MIMO channel characterization: challenges and enabling solutions. IEEE Commun Mag, 61(10):140-146.

[63]Li N, Fan JB, Long WX, et al., 2023. Misalignment-robust OAM multi-mode multiplexing with index modulation based on UCA samples learning. IEEE 34th Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1-5.

[64]Li RW, Sun S, Tao MX, 2023. Applicable regions of spherical and plane wave models for extremely large-scale array communications. https://arxiv.org/abs/2301.06036

[65]Li XR, Lu HQ, Zeng Y, et al., 2022. Near-field modeling and performance analysis of modular extremely large-scale array communications. IEEE Commun Lett, 26(7):‍‍1529-1533.

[66]Li XR, Lu HQ, Zeng Y, et al., 2023a. Modular extremely large-scale array communication: near-field modelling and performance analysis. China Commun, 20(4):132-152.

[67]Li XR, Dong ZJ, Zeng Y, et al., 2023b. Near-field beam focusing pattern and grating lobe characterization for modular XL-array. IEEE Global Communications Conf, p.‍4068-4073.

[68]Li XR, Dong ZJ, Zeng Y, et al., 2024. Multi-user modular XL-MIMO communications: near-field beam focusing pattern and user grouping. IEEE Trans Wirel Commun, 23(10):13766-13781.

[69]Li ZR, Gao Z, Li T, 2023. Sensing user’s channel and location with terahertz extra-large reconfigurable intelligent surface under hybrid-field beam squint effect. IEEE J Sel Top Signal Process, 17(4):893-911.

[70]Lian YD, Qi X, Wang YH, et al., 2022. OAM beam generation in space and its applications: a review. Opt Lasers Eng, 151:106923.

[71]Liang JC, Zhang L, Luo ZJ, et al., 2024. A filtering reconfigurable intelligent surface for interference-free wireless communications. Nat Commun, 15(1):3838.

[72]Lin MT, Gao Y, Liu PG, et al., 2017. Theoretical analyses and design of circular array to generate orbital angular momentum. IEEE Trans Antenn Propag, 65(7):3510-3519.

[73]Liu J, Yang G, Liu YW, et al., 2024. RIS empowered near-field covert communications. IEEE Trans Wirel Commun, 23(10):15477-15492.

[74]Liu LF, Oestges C, Poutanen J, et al., 2012. The COST 2100 MIMO channel model. IEEE Wirel Commun, 19(6):92-99.

[75]Liu Q, Chen ZN, Liu YN, et al., 2018. Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna. IEEE Trans Antenn Propag, 66(4):1796-1804.

[76]Liu W, Ren H, Pan CH, et al., 2023a. Deep learning based beam training for extremely large-scale massive MIMO in near-field domain. IEEE Commun Lett, 27(1):‍170-174.

[77]Liu W, Pan CH, Ren H, et al., 2023b. Low-overhead beam training scheme for extremely large-scale RIS in near field. IEEE Trans Commun, 71(8):4924-4940.

[78]Liu W, Pan CH, Ren H, et al., 2024a. Near-field multiuser beam-training for extremely large-scale MIMO systems. IEEE Trans Commun, early access.

[79]Liu W, Pan CH, Ren H, et al., 2024b. NMBEnet: efficient near-field mmWave beam training for multiuser OFDM systems using sub-6 GHz pilots. https://arxiv.org/abs/2404.15469

[80]Liu YM, Zhang JH, Zhang YX, et al., 2024. A shared cluster-based stochastic channel model for integrated sensing and communication systems. IEEE Trans Veh Technol, 73(5):6032-6044.

[81]Liu YW, Wang ZL, Xu JQ, et al., 2023a. Near-field communications: a tutorial review. IEEE Open J Commun Soc, 4:1999-2049.

[82]Liu YW, Xu JQ, Wang ZL, et al., 2023b. Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions. Front Inform Technol Electron Eng, 24(12):1689-1707.

[83]Liu ZL, Zhang JY, Liu ZH, et al., 2024. Cell-free XL-MIMO meets multi-agent reinforcement learning: architectures, challenges, and future directions. IEEE Wirel Commun, 31(4):155-162.

[84]Long WX, Chen R, Moretti M, et al., 2021a. AoA estimation for OAM communication systems with mode-frequency multi-time ESPRIT method. IEEE Trans Veh Technol, 70(5):5094-5098.

[85]Long WX, Chen R, Moretti M, et al., 2021b. Joint spatial division and coaxial multiplexing for downlink multi-user OAM wireless backhaul. IEEE Trans Broadcast, 67(4):879-893.

[86]Long WX, Chen R, Moretti M, 2023. Recursive ESPRIT algorithm for multi-user OAM low-overhead AoA estimation. IEEE Trans Veh Technol, 72(2):2672-2677.

[87]Lu HQ, Zeng Y, 2021. How does performance scale with antenna number for extremely large-scale MIMO? Proc IEEE Int Conf on Communications, p.1-6.

[88]Lu HQ, Zeng Y, 2022. Communicating with extremely large-scale array/surface: unified modeling and performance analysis. IEEE Trans Wirel Commun, 21(6):4039-4053.

[89]Lu HQ, Zeng Y, You CS, et al., 2024. A tutorial on near-field XL-MIMO communications towards 6G. IEEE Commun Surv Tut, 26(4):2213-2257.

[90]Lu Y, Dai LL, 2023. Near-field channel estimation in mixed LoS/NLoS environments for extremely large-scale MIMO systems. IEEE Trans Commun, 71(6):3694-3707.

[91]Lyu YJ, Yuan ZQ, Zhang FC, et al., 2023. Virtual antenna array for W-band channel sounding: design, implementation, and experimental validation. IEEE J Sel Top Signal Process, 17(4):729-744.

[92]McGloin D, Dholakia K, 2005. Bessel beams: diffraction in a new light. Contemp Phys, 46(1):15-28.

[93]Meng XS, Chen XM, Yang L, et al., 2020. Launcher of high-order Bessel vortex beam carrying orbital angular momentum by designing anisotropic holographic metasurface. Appl Phys Lett, 117(24):243503.

[94]Mohammadi SM, Daldorff LKS, Bergman JES, et al., 2010. Orbital angular momentum in radio—a system study. IEEE Trans Antenn Propag, 58(2):565-572.

[95]Mohsan SAH, Qian H, Amjad H, 2023. A comprehensive review of optical wireless power transfer technology. Front Inform Technol Electron Eng, 24(6):767-800.

[96]Molaei AM, Zakeri B, Andargoli SMH, 2020. Components separation algorithm for localization and classification of mixed near-field and far-field sources in multipath propagation. IEEE Tran Signal Process, 68:404-419.

[97]Molaei AM, del Hougne P, Fusco V, et al., 2022. Efficient joint estimation of DOA, range and reflectivity in near-field by using mixed-order statistics and a symmetric MIMO array. IEEE Trans Veh Technol, 71(3):2824-2842.

[98]Mukherjee P, Gupta B, 2008. Terahertz (THz) frequency sources and antennas‍—a brief review. Int J Infrared Milli Waves, 29(12):1091-1102.

[99]Myers NJ, Heath RW, 2022. InFocus: a spatial coding technique to mitigate misfocus in near-field LoS beamforming. IEEE Trans Wirel Commun, 21(4):2193-2209.

[100]Nepa P, Buffi A, 2017. Near-field-focused microwave antennas: near-field shaping and implementation. IEEE Antenn Propag Mag, 59(3):42-53.

[101]Alliance Next G, 2022. Next G Alliance Report: 6G Technologies.https://www.nextgalliance.org/wp-content/uploads/dlm_uploads/2022/07/TWG-report-6G-technologies.pdf

[102]Ng KH, Tameh EK, Doufexi A, et al., 2007. Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data. IEEE Trans Veh Technol, 56(3):1019-1032.

[103]Ning BY, Chen Z, Chen WR, et al., 2020. Channel estimation and transmission for intelligent reflecting surface assisted THz communications. Proc IEEE Int Conf on Communications, p.1-7.

[104]Ouyang CJ, Liu YW, Yang HW, 2022. Performance of downlink and uplink integrated sensing and communications (ISAC) systems. IEEE Wirel Commun Lett, 11(9):‍‍‍1850-1854.

[105]Ouyang CJ, Liu YW, Zhang XQ, et al., 2023. Near-field communications: a degree-of-freedom perspective. https://arxiv.org/abs/2308.00362

[106]Pan YJ, Pan CH, Jin S, et al., 2023. RIS-aided near-field localization and channel estimation for the terahertz system. IEEE J Sel Top Signal Process, 17(4):878-892.

[107]Payami S, Tufvesson F, 2012. Channel measurements and analysis for very large array systems at 2.6 GHz. Proc 6th European Conf on Antennas and Propagation, p.433-437.

[108]Pizzo A, Marzetta T, Sanguinetti L, 2020a. Holographic MIMO communications under spatially-stationary scattering. Proc 54th Asilomar Conf on Signals, Systems, and Computers, p.702-706.

[109]Pizzo A, Marzetta TL, Sanguinetti L, 2020b. Spatially-stationary model for holographic MIMO small-scale fading. IEEE J Sel Areas Commun, 38(9):1964-1979.

[110]Pizzo A, Sanguinetti L, Marzetta TL, 2022a. Fourier plane-wave series expansion for holographic MIMO communications. IEEE Trans Wirel Commun, 21(9):6890-6905.

[111]Pizzo A, Torres ADJ, Sanguinetti L, et al., 2022b. Nyquist sampling and degrees of freedom of electromagnetic fields. IEEE Trans Signal Process, 70:3935-3947.

[112]Pizzo A, Sanguinetti L, Marzetta TL, 2022c. Spatial characterization of electromagnetic random channels. IEEE Open J Commun Soc, 3:847-866.

[113]Ramezani P, Kosasih A, Irshad A, et al., 2023. Exploiting the depth and angular domains for massive near-field spatial multiplexing. IEEE BITS Inform Theory Mag, 3(1):14-26.

[114]Raschkowski L, Kyösti P, Kusume K, et al., 2015. METIS Channel Models. Technical Report No. ICT-317669-METIS/D1.4 Ver3, ICT. https://www.‍researchgate.‍net/publication/282807948_METIS_Channel_Models_D14

[115]Rogalin R, Bursalioglu OY, Papadopoulos H, et al., 2014. Scalable synchronization and reciprocity calibration for distributed multiuser MIMO. IEEE Trans Wirel Commun, 13(4):1815-1831.

[116]Sasaki H, Lee D, Fukumoto H, et al., 2018. Experiment on over-100-Gbps wireless transmission with OAM-MIMO multiplexing system in 28-GHZ band. Proc IEEE Global Communications Conf, p.1-6.

[117]Selvan KT, Janaswamy R, 2017. Fraunhofer and Fresnel distances: unified derivation for aperture antennas. IEEE Antenn Propag Mag, 59(4):12-15.

[118]Sherman J, 1962. Properties of focused apertures in the Fresnel region. IRE Trans Antenn Propag, 10(4):399-408.

[119]Shtaiwi E, Zhang HL, Vishwanath S, et al., 2021. Channel estimation approach for RIS assisted MIMO systems. IEEE Trans Cogn Commun Netw, 7(2):452-465.

[120]Shuang Y, Zhao HT, Ji W, et al., 2020. Programmable high-order OAM-carrying beams for direct-modulation wireless communications. IEEE J Emerg Sel Top Circ Syst, 10(1):‍29-37.

[121]Sun S, Li RW, Han C, et al., 2023. How to differentiate between near field and far field: revisiting the Rayleigh distance. https://arxiv.org/abs/2309.13238

[122]Tan JD, Su Z, Long YL, 2015. A full 3-D GPU-based beam-tracing method for complex indoor environments propagation modeling. IEEE Trans Antenn Propag, 63(6):‍2705-2718.

[123]Tarboush S, Ali A, Al-Naffouri TY, 2024. Cross-field channel estimation for ultra massive-MIMO THz systems. IEEE Trans Wirel Commun, 23(8):8619-8635.

[124]Thidé B, Then H, Sjöholm J, et al., 2007. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett, 99(8):087701.

[125]Verdu S, 2002. Spectral efficiency in the wideband regime. IEEE Trans Inform Theory, 48(6):1319-1343.

[126]Wang C, Zhang JH, Tian L, et al., 2017. The spatial evolution of clusters in massive MIMO mobile measurement at 3.5 GHz. Proc IEEE 85th Vehicular Technology Conf, p.1-6.

[127]Wang H, Wang WM, Zhang FC, et al., 2024. On efficient echo suppression with phaseless data in the joint frequency and spatial domain for antenna pattern measurement in a nonanechoic chamber. IEEE Trans Antenn Propag, 72(3):‍2968-2973.

[128]Wang HZ, Zeng Y, 2022. SNR scaling laws for radio sensing with extremely large-scale MIMO. IEEE Int Conf on Communications Workshops, p.121-126.

[129]Wang HZ, Zeng Y, 2023. Can sparse arrays outperform collocated arrays for future wireless communications?IEEE Globecom Workshops, p.667-672.

[130]Wang HZ, Xiao ZQ, Zeng Y, 2024a. Cramér-Rao bounds for near-field sensing with extremely large-scale MIMO. IEEE Trans Signal Process, 72:701-717.

[131]Wang HZ, Feng C, Zeng Y, et al., 2024b. Enhancing spatial multiplexing and interference suppression for near- and far-field communications with sparse MIMO. https://arxiv.org/abs/2408.01956

[132]Wang JF, Ma Y, Yi N, et al., 2022. Network-ELAA beamforming and coverage analysis for eMBB/URLLC in spatially non-stationary Rician channels. IEEE Int Conf on Communications, p.3508-3513.

[133]Wang P, Li YH, Yuan XJ, et al., 2014. Tens of gigabits wireless communications over E-band LoS MIMO channels with uniform linear antenna arrays. IEEE Trans Wirel Commun, 13(7):3791-3805.

[134]Wang Q, Ai B, Matolak DW, et al., 2017. Spatial variation analysis for measured indoor massive MIMO channels. IEEE Access, 5:20828-20840.

[135]Wei L, Huang CW, Alexandropoulos GC, et al., 2023. Tri-polarized holographic MIMO surfaces for near-field communications: channel modeling and precoding design. IEEE Trans Wirel Commun, 22(12):8828-8842.

[136]Wu CY, You CS, Liu YW, et al., 2024. Two-stage hierarchical beam training for near-field communications. IEEE Trans Veh Technol, 73(2):2032-2044.

[137]Wu QQ, Zhang R, 2019. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wirel Commun, 18(11):5394-5409.

[138]Wu ZD, Dai LL, 2023. Multiple access for near-field communications: SDMA or LDMA? IEEE J Sel Areas Commun, 41(6):1918-1935.

[139]Wu ZD, Cui MY, Dai LL, 2023. Enabling more users to benefit from near-field communications: from linear to circular array. IEEE Trans Wirel Commun, 23(4):3735-3748.

[140]Xiao J, Wang J, Chen Z, et al., 2023. U-MLP-based hybrid-field channel estimation for XL-RIS assisted millimeter-wave MIMO systems. IEEE Wirel Commun Lett, 12(6):1042-1046.

[141]Xie ZY, Liu YW, Xu JQ, et al., 2023. Performance analysis for near-field MIMO: discrete and continuous aperture antennas. IEEE Wirel Commun Lett, 12(12):2258-2262.

[142]Xu HQ, Zhao YJ, Mo LM, et al., 2012. Inter-cell antenna calibration for coherent joint transmission in TDD system. IEEE Globecom Workshops, p.297-301.

[143]Xu HX, Tang P, Zhang JH, et al., 2024. An empirical study on near-field, spatial non-stationarity, and beam misalignment characteristics of THz XL-MIMO channels at 132 GHz. IEEE Int Conf on Communications Workshops, p.744-749.

[144]Xu P, Zhang KY, Liu HX, et al., 2023. Dual-band metasurface generating multiple OAM beams independently in full polarizations. Opt Expr, 31(20):32637-32651.

[145]Xue H, Zhang S, Zhao SH, et al., 2022a. Generation of the Airy beam based on the truncated asymptotic expression of the Airy function using a transmissive metasurface. Opt Expr, 30(24):43842-43851.

[146]Xue H, Li RJ, Xu P, et al., 2022b. Model construction, theoretical analysis, and miniaturized implementation of high-order deflected multivortex beams with uniform elliptical array. IEEE Trans Antenn Propag, 70(8):7234-7239.

[147]Xue H, Han JQ, Zhang S, et al., 2023. Co-modulation of spin angular momentum and high-order orbital angular momentum based on anisotropic holographic metasurfaces. IEEE Trans Antenn Propag, 71(5):4594-4599.

[148]Yaghjian A, 1986. An overview of near-field antenna measurements. IEEE Trans Antenn Propag, 34(1):30-45.

[149]Yamada W, Kita N, Sugiyama T, et al., 2009. Plane-wave and vector-rotation approximation technique for reducing computational complexity to simulate MIMO propagation channel using ray-tracing. IEICE Trans Commun, E92-B(12):3850-3860.

[150]Yang LJ, Sun S, Sha WEI, et al., 2023. Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization. Front Inform Technol Electron Eng, 24(12):1776-1790.

[151]Ye M, Liang X, Pan CH, et al., 2024. GAN based near-field channel estimation for extremely large-scale MIMO systems. https://arxiv.org/abs/2402.17281

[152]Yu SX, Li L, Shi GM, et al., 2016. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl Phys Lett, 108(12):1211903.

[153]Yu SX, Li L, Kou N, 2017. Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces. Opt Mater Expr, 7(9):‍3312-3321.

[154]Yu WT, Shen YF, He HT, et al., 2023. An adaptive and robust deep learning framework for THz ultra-massive MIMO channel estimation. IEEE J Sel Top Signal Process, 17(4):761-776.

[155]Yuan YF, Zhao YJ, Zong BQ, et al., 2020. Potential key technologies for 6G mobile communications. Sci China Inform Sci, 63(8):‍183301.

[156]Yuan ZQ, Zhang JH, Ji YL, et al., 2023a. Spatial non-stationary near-field channel modeling and validation for massive MIMO systems. IEEE Trans Antenn Propag, 71(1):‍921-933.

[157]Yuan ZQ, Zhang FC, Zhang YX, et al., 2023b. On phase mode selection in the frequency-invariant beamformer for near-field mmWave channel characterization. IEEE Trans Antenn Propag, 71(11):8975-8986.

[158]Yuan ZQ, Lyu YJ, Zhang JH, et al., 2023c. Sub-THz ray tracing simulation and experimental validation for indoor scenarios. IEEE Int Mediterranean Conf on Communications and Networking, p.7-11.

[159]Yuan ZQ, Zhang JH, Degli-Esposti V, et al., 2024. Efficient ray-tracing simulation for near-field spatial non-stationary mmWave massive MIMO channel and its experimental validation. IEEE Trans Wirel Commun, 23(8):‍8910-8923.

[160]Yue SH, Zeng SH, Liu L, et al., 2023. Channel estimation for holographic communications in hybrid near-far field. Proc IEEE Global Communications Conf, p.6133-6138.

[161]Zhang FC, Fan W, 2019. Near-field ultra-wideband mmWave channel characterization using successive cancellation beamspace UCA algorithm. IEEE Trans Veh Technol, 68(8):7248-7259.

[162]Zhang HY, Shlezinger N, Guidi F, et al., 2022. Beam focusing for near-field multiuser MIMO communications. IEEE Trans Wirel Commun, 21(9):7476-7490.

[163]Zhang J, Yang G, Ye QB, et al., 2024. Low-complexity joint azimuth-range-velocity estimation for integrated sensing and communication with OFDM waveform. https://arxiv.org/abs/2405.09443

[164]Zhang JH, Zhang YX, Yu YW, et al., 2017. 3-D MIMO: how much does it meet our expectations observed from channel measurements?IEEE J Sel Areas Commun, 35(8):1887-1903.

[165]Zhang JH, Zheng Z, Zhang YX, et al., 2018. 3D MIMO for 5G NR: several observations from 32 to massive 256 antennas based on channel measurement. IEEE Commun Mag, 56(3):62-70.

[166]Zhang JH, Lin JX, Tang P, et al., 2024a. Deterministic ray tracing: a promising approach to THZ channel modeling in 6G deployment scenarios. IEEE Commun Mag, 62(2):‍48-54.

[167]Zhang JH, Miao HY, Tang P, et al., 2024b. New mid-band for 6G: several considerations from the channel propagation characteristics perspective. IEEE Commun Mag, 63(1):175-180.

[168]Zhang P, Chen JQ, Yang XL, et al., 2018. Recent research on massive MIMO propagation channels: a survey. IEEE Commun Mag, 56(12):22-29.

[169]Zhang S, Di B, Zhang H, et al., 2024. Hierarchical codebook design using scale-changeable reconfigurable holographic surfaces in near-far field communications. Proc IEEE Global Commun Conf.

[170]Zhang SP, Zhang YT, Di BY, 2023. Near-far field codebook design for IOS-aided multi-user communications. IEEE Global Communications Conf, p.2888-2893.

[171]Zhang X, Zhang HY, Eldar YC, 2024. Near-field sparse channel representation and estimation in 6G wireless communications. IEEE Trans Commun, 72(1):450-464.

[172]Zhang XY, Wang ZN, Zhang HY, et al., 2023. Near-field channel estimation for extremely large-scale array communications: a model-based deep learning approach. IEEE Commun Lett, 27(4):1155-1159.

[173]Zhang Y, Alkhateeb A, 2023. Deep learning of near field beam focusing in terahertz wideband massive MIMO systems. IEEE Wirel Commun Lett, 12(3):535-539.

[174]Zhang YC, Zhang HY, Xiao S, et al., 2024. Near-field wideband secure communications: an analog beamfocusing approach. IEEE Trans Signal Process, 72:2173-2187.

[175]Zhang YT, Di BY, Zhang HL, et al., 2022. Codebook design for large reconfigurable refractive surface enabled holographic MIMO systems. Proc IEEE Global Communications Conf, p.639-644.

[176]Zhang YT, Di BY, Zhang HL, et al., 2023. Near-far field beamforming for holographic multiple-input multiple-output. J Commun Inform Netw, 8(2):99-110.

[177]Zhang Z, Zhang JH, Zhang YX, et al., 2023. Deep reinforcement learning based dynamic beam selection in dual-band communication systems. IEEE Trans Wirel Commun, 23(4):2591-2606.

[178]Zhang Z, Liu YW, Wang ZL, et al., 2024. Physical layer security in near-field communications. IEEE Trans Veh Technol, 73(7):10761-10766.

[179]Zhao YJ, 2023. Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions. Front Inform Technol Electron Eng, 24(12):1669-1688.

[180]Zhao YJ, 2024a. Cascaded channel decoupling based solution for RIS regulation matrix. Intell Converg Netw, 5(1):‍19-27.

[181]Zhao YJ, 2024b. Reconfigurable intelligent surface constructing 6G near-field networks. Mob Commun, 48(4):‍‍1-11 (in Chinese).

[182]Zhao YJ, 2024c. RIS constructing 6G near-field networks: opportunities and challenges.https://arxiv.org/abs/2403.15390

[183]Zhao YJ, 2024d. RIS assisted wireless networks: collaborative regulation, deployment mode and field testing. IET Commun, 18:1665-1682.

[184]Zhao YJ, Jian MN, 2021. Applications and challenges of reconfigurable intelligent surface for 6G networks. https://arxiv.org/abs/2108.13164

[185]Zhao YJ, Lv X, 2022. Network coexistence analysis of RIS-assisted wireless communications. IEEE Access, 10:63442-63454.

[186]Zhao YJ, Yu GH, Xu HQ, 2019. 6G mobile communication networks: vision, challenges, and key technologies. Sci Sin Inform, 49(8):963-987.

[187]Zhao YJ, Dai LL, Zhang JH, et al., 2024. 6G Near-Field Technologies White Paper. FuTURE Forum, Nanjing, China.

[188]Zheng BX, Zhang R, 2022. Simultaneous transmit diversity and passive beamforming with large-scale intelligent reflecting surface. IEEE Trans Wirel Commun, 22(2):‍‍920-933.

[189]Zheng BX, Ma TT, Yi X, et al., 2023. Intelligent reflecting surface-aided transmit diversity and performance analysis. IEEE Int Conf on Communications, p.2822-2827.

[190]Zheng S, 2024. RIS(24)012008r3 (NWI), Reconfigurable Intelligent Surfaces: Near-Field Channel Modeling and Mechanics. ETSI ISG RIS. https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=70055

[191]Zheng Z, Fu MC, Wang WQ, et al., 2018. Mixed far-field and near-field source localization based on subarray cross-cumulant. Signal Process, 150:51-56.

[192]Zhi KD, Pan CH, Ren H, et al., 2024. Performance analysis and low-complexity design for XL-MIMO with near-field spatial non-stationarities. IEEE J Sel Areas Commun, 42(6):1656-1672.

[193]Zhou KZ, He SL, Hong SH, et al., 2020. Spontaneous-focusing and self-healing of Airy-like beams. Results Phys, 19:103526.

[194]Zhou Z, Gao X, Fang J, et al., 2015. Spherical wave channel and analysis for large linear array in LoS conditions. Proc IEEE Globecom Workshops, p.1-6.

[195]Zhu LP, Ma WY, Zhang R, 2023. Movable antennas for wireless communication: opportunities and challenges. IEEE Commun Mag, 62(6):114-120.

[196]Zhuo BT, Gu JP, Duan W, et al., 2024. Extremely large-scale array system: cooperative NFC or FFC? IEEE Wirel Commun Lett, 13(5):1250-1254.

[197]ZTE, 2011. R1-112261 Evaluation on the Impact of Timing Error between CoMP Transmission Points. https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_66/Docs/R1-112261.zip

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE