Full Text:   <709>

Summary:  <146>

CLC number: TN929.5

On-line Access: 2025-01-24

Received: 2024-03-01

Revision Accepted: 2025-01-24

Crosschecked: 2024-06-18

Cited: 0

Clicked: 1184

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Pan Tang

https://orcid.org/0000-0003-0432-7361

Jianhua ZHANG

https://orcid.org/0000-0003-0484-6188

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.12 P.1627-1650

http://doi.org/10.1631/FITEE.2400140


XL-MIMO channel measurement, characterization, and modeling for 6G: a survey


Author(s):  Pan TANG, Jianhua ZHANG, Haiyang MIAO, Qi WEI, Weirang ZUO, Lei TIAN, Tao JIANG, Guangyi LIU

Affiliation(s):  School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; more

Corresponding email(s):   tangpan27@bupt.edu.cn, jhzhang@bupt.edu.cn

Key Words:  6G, XL-MIMO, Near-field, Channel measurement, Channel modeling


Pan TANG, Jianhua ZHANG, Haiyang MIAO, Qi WEI, Weirang ZUO, Lei TIAN, Tao JIANG, Guangyi LIU. XL-MIMO channel measurement, characterization, and modeling for 6G: a survey[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(12): 1627-1650.

@article{title="XL-MIMO channel measurement, characterization, and modeling for 6G: a survey",
author="Pan TANG, Jianhua ZHANG, Haiyang MIAO, Qi WEI, Weirang ZUO, Lei TIAN, Tao JIANG, Guangyi LIU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="12",
pages="1627-1650",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400140"
}

%0 Journal Article
%T XL-MIMO channel measurement, characterization, and modeling for 6G: a survey
%A Pan TANG
%A Jianhua ZHANG
%A Haiyang MIAO
%A Qi WEI
%A Weirang ZUO
%A Lei TIAN
%A Tao JIANG
%A Guangyi LIU
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 12
%P 1627-1650
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400140

TY - JOUR
T1 - XL-MIMO channel measurement, characterization, and modeling for 6G: a survey
A1 - Pan TANG
A1 - Jianhua ZHANG
A1 - Haiyang MIAO
A1 - Qi WEI
A1 - Weirang ZUO
A1 - Lei TIAN
A1 - Tao JIANG
A1 - Guangyi LIU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 12
SP - 1627
EP - 1650
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400140


Abstract: 
Extremely-large-scale multiple-input multiple-output (XL-MIMO) technology, offering vast spatial degrees of freedom by deploying a huge number of antennas, is a promising enabling technology to empower sixth-generation mobile networks (6G). The XL-MIMO channel model is a prerequisite of XL-MIMO technology optimization, system design, and performance evaluation. In this paper, we provide an overview of challenges and ongoing research in XL-MIMO channel measurement, characterization, and modeling. In particular, characterizing and modeling near-field effects and spatial non-stationarity (SnS) are discussed. Also, the channel modeling methods that can describe these new channel characteristics are surveyed. Furthermore, open issues in XL-MIMO channel measurement, characterization, and modeling are presented to give insights into future XL-MIMO channel research.

面向6G的XL-MIMO信道测量、表征与建模研究综述

唐盼1,张建华2,缪海烊2,魏琦2,左伟穰2,田磊2,姜涛3,刘光毅3
1北京邮电大学电子工程学院,中国北京市,100876
2北京邮电大学信息与通信工程学院,中国北京市,100876
3中国移动研究院,中国北京市,100053
摘要:超大规模多入多出(XL-MIMO)通过部署大规模的天线获取更大空间自由度,是使能第六代移动通信网络(6G)的关键技术之一。XL-MIMO信道模型是XL-MIMO技术优化、系统设计和性能评估的先决条件。本文首先概述XL-MIMO信道研究在测量、表征和建模这三个方面遇到的挑战和最新进展。其中,讨论了近场空间非稳性的测量结果与表征方法。然后,综述了基于统计性、确定性和混合方法的XL-MIMO信道建模方法。最后,指出XL-MIMO信道研究在测量、表征与建模方面的研究方向。

关键词:第六代移动通信网络(6G);超大规模多入多出(XL-MIMO);近场;信道测量;信道建模

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP, 2018. Study on Channel Model for Frequencies from 0.5 to 100 GHz. 3GPP TR 38.901.

[2]Ademaj F, Schwarz S, Berisha T, et al., 2019. A spatial consistency model for geometry-based stochastic channels. IEEE Access, 7:183414-183427.

[3]Chen JJ, Yin XF, Wang S, 2016a. Measurement-based massive MIMO channel modeling in 13-17 GHz for indoor hall scenarios. IEEE Int Conf on Communications, p.1-5.

[4]Chen JJ, Wang S, Yin XF, 2016b. A spherical-wavefront-based scatterer localization algorithm using large-scale antenna arrays. IEEE Commun Lett, 20(9):1796-1799.

[5]Chen JJ, Yin XF, Cai XS, et al., 2017. Measurement-based massive MIMO channel modeling for outdoor LoS and NLoS environments. IEEE Access, 5:2126-2140.

[6]Chen Y, Li YB, Han C, et al., 2021. Channel measurement and ray-tracing-statistical hybrid modeling for low-terahertz indoor communications. IEEE Trans Wirel Commun, 20(12):8163-8176.

[7]Cui MY, Dai LL, 2024. Near-field wideband beamforming for extremely large antenna arrays. IEEE Trans Wirel Commun, 23(10):13110-13124.

[8]Cui MY, Wu ZD, Lu Y, et al., 2023. Near-field MIMO communications for 6G: fundamentals, challenges, potentials, and future directions. IEEE Commun Mag, 61(1):40-46.

[9]Dala Pegorara Souto V, Dester PS, Soares Pereira Facina M, et al., 2023. Emerging MIMO technologies for 6G networks. Sensors, 23(4):1921.

[10]de Figueiredo FAP, 2022. An overview of massive MIMO for 5G and 6G. IEEE Lat Am Trans, 20(6):931-940.

[11]Fayad Y, Wang CY, Cao QS, et al., 2015. A developed ESPRIT algorithm for DOA estimation. Frequenz, 69(5-6):263-269.

[12]Ferreira D, Caldeirinha RFS, Leonor N, 2015. Real-time high-resolution radio frequency channel sounder based on the sliding correlation principle. IET Microw Antenn Propag, 9(8):837-846.

[13]Fleury BH, Jourdan P, Stucki A, 2002. High-resolution channel parameter estimation for MIMO applications using the SAGE algorithm. Int Zurich Seminar on Broadband Communications Access-Transmission-Networking, p.30.

[14]Gaillot DP, Tanghe E, Stefanut P, et al., 2011. Accuracy of specular path estimates with ESPRIT and RiMAX in the presence of measurement-based diffuse multipath components. Proc 5th European Conf on Antennas and Propagation, p.3619-3622.

[15]Gao TY, Tang P, Tian L, et al., 2023. A 3GPP-like channel simulation framework considering near-field spatial non-stationary characteristics of massive MIMO. IEEE Globecom Workshops, p.1493-1498.

[16]Gao X, Edfors O, Rusek F, et al., 2011. Linear pre-coding performance in measured very-large MIMO channels. IEEE Vehicular Technology Conf, p.1-5.

[17]Gao X, Tufvesson F, Edfors O, et al., 2012. Measured propagation characteristics for very-large MIMO at 2.6 GHz. 46th Asilomar Conf on Signals, Systems and Computers, p.295-299.

[18]Gao X, Tufvesson F, Edfors O, 2013. Massive MIMO channels—measurements and models. Asilomar Conf on Signals, Systems and Computers, p.280-284.

[19]Gao X, Edfors O, Rusek F, et al., 2015. Massive MIMO performance evaluation based on measured propagation data. IEEE Trans Wirel Commun, 14(7):3899-3911.

[20]Gong TR, Gavriilidis P, Ji R, et al., 2024. Holographic MIMO communications: theoretical foundations, enabling technologies, and future directions. IEEE Commun Surv Tutor, 26(1):196-257.

[21]He J, Swamy MNS, Ahmad MO, 2012. Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources. IEEE Trans Signal Process, 60(4):2066-2070.

[22]He YB, Wang CX, Chang HT, et al., 2023. A novel 3-D beam domain channel model for maritime massive MIMO communication systems using uniform circular arrays. IEEE Trans Commun, 71(4):2487-2502.

[23]Hochwald BM, Marzetta TL, Tarokh V, 2004. Multiple-antenna channel hardening and its implications for rate feedback and scheduling. IEEE Trans Inform Theory, 50(9):1893-1909.

[24]Hong JX, Rodríguez-Piñeiro J, Yin XF, et al., 2023. Joint channel parameter estimation and scatterers localization. IEEE Trans Wirel Commun, 22(5):3324-3340.

[25]Huang J, Wang CX, Feng R, et al., 2017. Multi-frequency mmWave massive MIMO channel measurements and characterization for 5G wireless communication systems. IEEE J Sel Areas Commun, 35(7):1591-1605.

[26]Huang YD, Barkat M, 1991. Near-field multiple source localization by passive sensor array. IEEE Trans Antenn Propag, 39(7):968-975.

[27]Huo YM, Lin XQ, Di BY, et al., 2023. Technology trends for massive MIMO towards 6G. Sensors, 23(13):6062.

[28]ITU-R, 2023. Framework and Overall Objectives of the Future Development of IMT for 2030 and Beyond. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2160-0-202311-I!!PDF-E.pdf [Accessed on Oct. 10, 2024].

[29]Jing GZ, Hong JX, Yin XF, et al., 2023. Measurement-based 3-D channel modeling with cluster-of-scatterers estimated under spherical-wave assumption. IEEE Trans Wirel Commun, 22(9):5828-5843.

[30]Ju SH, Rappaport TS, 2021. Sub-terahertz spatial statistical MIMO channel model for urban microcells at 142 GHz. IEEE Global Communications Conf, p.1-6.

[31]Lai F, Wang CX, Huang J, et al., 2023. A novel beam domain channel model for B5G massive MIMO wireless communication systems. IEEE Trans Veh Technol, 72(4):4143-4156.

[32]Landmann M, 2008. Limitations of Experimental Channel Characterisation. PhD Thesis, Technische Universität Ilmenau, Germany.

[33]Li JX, Zhao YP, 2014. Channel characterization and modeling for large-scale antenna systems. 14th Int Symp on Communications and Information Technologies, p.559-563.

[34]Li JZ, Ai B, He RS, et al., 2017. Characterization of indoor massive MIMO channel at 11 GHz. 32nd General Assembly and Scientific Symp of the International Union of Radio Science, p.1-4.

[35]Li JZ, Ai B, He RS, et al., 2018a. The 3D spatial non-stationarity and spherical wavefront in massive MIMO channel measurement. 10th Int Conf on Wireless Communications and Signal Processing, p.1-6.

[36]Li JZ, Ai B, He RS, et al., 2018b. Directional analysis of massive MIMO channels at 11 GHz in theater environment. 88th Vehicular Technology Conf, p.1-5.

[37]Li JZ, Ai B, He RS, et al., 2019a. A cluster-based channel model for massive MIMO communications in indoor hotspot scenarios. IEEE Trans Wirel Commun, 18(8):3856-3870.

[38]Li JZ, Ai B, He RS, et al., 2019b. On 3D cluster-based channel modeling for large-scale array communications. IEEE Trans Wirel Commun, 18(10):4902-4914.

[39]Li MT, Yuan ZQ, Lyu YJ, et al., 2023. Gigantic MIMO channel characterization: challenges and enabling solutions. IEEE Commun Mag, 61(10):140-146.

[40]Liu L, Tao C, Matolak DW, et al., 2015. Stationarity investigation of a LOS massive MIMO channel in stadium scenarios. 82nd Vehicular Technology Conf, p.1-5.

[41]Liu LF, Oestges C, Poutanen J, et al., 2012. The COST 2100 MIMO channel model. IEEE Wirel Commun, 19(6):92-99.

[42]Liu MY, Zhang Y, Jin YS, et al., 2024. Towards near-field communications for field communications for 6G: challenges and opportunities. ZTE Commun, 22(1):3-15.

[43]Liu XM, Zhang JH, Tang P, et al., 2023. Channel sparsity variation and model-based analysis on 6, 26, and 132 GHz measurements.

[44]Liu YM, Zhang JH, Zhang YX, et al., 2024. A shared cluster-based stochastic channel model for integrated sensing and communication systems. IEEE Trans Veh Technol, 73(5):6032-6044.

[45]Liu YW, Xu JQ, Wang ZL, et al., 2023. Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions. Front Inform Technol Electron Eng, 24(12):1689-1707.

[46]López CF, Wang CX, 2018. Novel 3-D non-stationary wideband models for massive MIMO channels. IEEE Trans Wirel Commun, 17(5):2893-2905.

[47]López CF, Wang CX, Zheng Y, 2022. A 3D non-stationary wideband massive MIMO channel model based on ray-level evolution. IEEE Trans Commun, 70(1):621-634.

[48]Lyu YJ, Mbugua AW, Olesen K, et al., 2021. Design and validation of the phase-compensated long-range sub-THz VNA-based channel sounder. IEEE Antenn Wirel Propag Lett, 20(12):2461-2465.

[49]Martínez AO, de Carvalho E, Nielsen JØ, 2016. Massive MIMO properties based on measured channels: channel hardening, user decorrelation and channel sparsity. 50th Asilomar Conf on Signals, Systems and Computers, p.1804-1808.

[50]Martínez AO, Nielsen JØ, de Carvalho E, et al., 2018. An experimental study of massive MIMO properties in 5G scenarios. IEEE Trans Antenn Propag, 66(12):7206-7215.

[51]Mbugua AW, Chen Y, Ji YL, et al., 2024. Experimental analysis of the multipath lifetime in indoor millimeter-wave channels. IEEE Antenn Wirel Propag Lett, 23(1):129-133.

[52]Miao HY, Zhang JH, Tang P, et al., 2023. Sub-6 GHz to mmWave for 5G-advanced and beyond: channel measurements, characteristics and impact on system performance. IEEE J Sel Areas Commun, 41(6):1945-1960.

[53]Miao HY, Tang P, Zhang JH, et al., 2024. Measurement-based massive MIMO channel characterization in 6 GHz band for 6G. IEEE Wireless Communications and Networking Conf, p.1-6.

[54]Molisch AF, 2005. Ultrawideband propagation channels-theory, measurement, and modeling. IEEE Trans Veh Technol, 54(5):1528-1545.

[55]Molisch AF, 2011. Wireless Communications (2nd Ed.). John Wiley & Sons, Chichester, UK.

[56]Molisch AF, Asplund H, Heddergott R, et al., 2006. The COST259 directional channel model—part I: overview and methodology. IEEE Trans Wirel Commun, 5(12):3421-3433.

[57]Mudonhi A, D’Errico R, Oestges C, 2020. Indoor mmWave channel characterization with large virtual antenna arrays. 14th European Conf on Antennas and Propagation, p.1-5.

[58]Ngo HQ, Larsson EG, 2017. No downlink pilots are needed in TDD massive MIMO. IEEE Trans Wirel Commun, 16(5):2921-2935.

[59]Ngo HQ, Larsson EG, Marzetta TL, 2013. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 61(4):1436-1449.

[60]Ngo HQ, Larsson EG, Marzetta TL, 2014. Aspects of favorable propagation in massive MIMO. 22nd European Signal Processing Conf, p.76-80.

[61]Payami S, Tufvesson F, 2012. Channel measurements and analysis for very large array systems at 2.6 GHz. 6th European Conf on Antennas and Propagation, p.433-437.

[62]Regier MD, Moodie EEM, 2016. The orthogonally partitioned EM algorithm: extending the EM algorithm for algorithmic stability and bias correction due to imperfect data. Int J Biostat, 12(1):65-77.

[63]Reynaud S, Cocheril Y, Vauzelle R, et al., 2006. Hybrid FDTD/UTD indoor channel modeling. Application to WiFi transmission systems. IEEE Vehicular Technology Conf, p.1-5.

[64]Rusek F, Persson D, Lau BK, et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 30(1):40-60.

[65]Saad W, Bennis M, Chen MZ, 2020. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw, 34(3):134-142.

[66]Saleh AAM, Valenzuela R, 1987. A statistical model for indoor multipath propagation. IEEE J Sel Areas Commun, 5(2):128-137.

[67]Sang J, Yuan YF, Tang WK, et al., 2024. Coverage enhancement by deploying RIS in 5G commercial mobile networks: field trials. IEEE Wirel Commun, 31(1):172-180.

[68]Schmidt R, 1986. Multiple emitter location and signal parameter estimation. IEEE Trans Antenn Propag, 34(3):276-280.

[69]Tamaddondar MM, Noori N, 2019. 3D massive MIMO channel modeling with cluster based ray tracing method. 27th Iranian Conf on Electrical Engineering, p.1249-1253.

[70]Wang C, Zhang JH, Tian L, et al., 2017. The spatial evolution of clusters in massive MIMO mobile measurement at 3.5 GHz. 85th Vehicular Technology Conf, p.1-6.

[71]Wang CW, Papadopoulos H, Kitao K, et al., 2016. Ray-tracing based performance evaluation of 5G mmWave massive MIMO in hotspots. Int Symp on Antennas and Propagation, p.608-609.

[72]Wang CX, Bian J, Sun J, et al., 2018. A survey of 5G channel measurements and models. IEEE Commun Surv Tutor, 20(4):3142-3168.

[73]Wang CX, Lv Z, Gao XQ, et al., 2022. Pervasive wireless channel modeling theory and applications to 6G GBSMs for all frequency bands and all scenarios. IEEE Trans Veh Technol, 71(9):9159-9173.

[74]Wang J, Wang CX, Huang J, et al., 2023. A novel THz massive MIMO beam domain channel model for 6G wireless communication systems. IEEE Trans Veh Technol, 72(8):9704-9719.

[75]Wei L, Huang CW, Alexandropoulos GC, et al., 2022. Multi-user holographic MIMO surfaces: channel modeling and spectral efficiency analysis. IEEE J Sel Top Signal Process, 16(5):1112-1124.

[76]Willhammar S, Flordelis J, van der Perre L, et al., 2018. Channel hardening in massive MIMO—a measurement based analysis. 19th Int Workshop on Signal Processing Advances in Wireless Communications, p.1-5.

[77]Willhammar S, Flordelis J, van der Perre L, et al., 2020. Channel hardening in massive MIMO: model parameters and experimental assessment. IEEE Open J Commun Soc, 1:501-512.

[78]Wu SB, Wang CX, Aggoune EHM, et al., 2014. A non-stationary 3-D wideband twin-cluster model for 5G massive MIMO channels. IEEE J Sel Areas Commun, 32(6):1207-1218.

[79]Wu SB, Wang CX, Aggoune EHM, et al., 2015. A novel Kronecker-based stochastic model for massive MIMO channels. IEEE/CIC Int Conf on Communications in China, p.1-6.

[80]Xu CP, Zhang JH, Zheng QF, et al., 2017. Measurement-based delay spread analysis of wideband massive MIMO system at 3.5 GHz. IEEE Int Conf on Computational Electromagnetics, p.246-248.

[81]Yang B, Liang X, Liu SN, et al., 2023. Intelligent 6G wireless network with multi-dimensional information perception dimensional. ZTE Commun, 21(2):3-10.

[82]Yang SJ, Lyu WT, Hu ZZ, et al., 2023. Channel estimation for near-field XL-RIS-aided mmWave hybrid beamforming architectures. IEEE Trans Veh Technol, 72(8):11029-11034.

[83]Yang Y, Zheng Y, Wang CX, et al., 2022. Channel capacities of non-stationary 6G massive MIMO channels with mutual coupling verified by channel measurements. 33rd Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1288-1293.

[84]Yao JL, Ren HP, Liu Q, 2017. Massive MIMO channel modeling using map-based ray tracing method. 7th IEEE Int Symp on Microwave, Antenna, Propagation, and EMC Technologies, p.1-5.

[85]Yu H, Zhang JH, Zheng QF, et al., 2016. The rationality analysis of massive MIMO virtual measurement at 3.5 GHz. IEEE/CIC Int Conf on Communications in China, p.1-5.

[86]Yuan Y, He RS, Ai B, et al., 2022. A 3D geometry-based THz channel model for 6G ultra massive MIMO systems. IEEE Trans Veh Technol, 71(3):2251-2266.

[87]Yuan ZQ, Zhang JH, Ji YL, et al., 2023a. Spatial non-stationary near-field channel modeling and validation for massive MIMO systems. IEEE Trans Antenn Propag, 71(1):921-933.

[88]Yuan ZQ, Zhang FC, Zhang YX, et al., 2023b. On phase mode selection in the frequency-invariant beamformer for near-field mmWave channel characterization. IEEE Trans Antenn Propag, 71(11):8975-8986.

[89]Yuan ZQ, Zhang JH, Degli-Esposti V, et al., 2024. Efficient ray-tracing simulation for near-field spatial non-stationary mmWave massive MIMO channel and its experimental validation. IEEE Trans Wirel Commun, 23(8):8910-8923.

[90]Zhai M, Li JZ, Liang Y, et al., 2016. A novel coupling mode based 3D MIMO channel modeling and capacity analysis for 5G. IEEE Int Conf on Ubiquitous Wireless Broadband, p.1-4.

[91]Zhang JH, 2016. The interdisciplinary research of big data and wireless channel: a cluster-nuclei based channel model. China Commun, 13(S2):14-26.

[92]Zhang JH, Zheng Z, Zhang YX, et al., 2018. 3D MIMO for 5G NR: several observations from 32 to massive 256 antennas based on channel measurement. IEEE Commun Mag, 56(3):62-70.

[93]Zhang JH, Lin JX, Tang P, et al., 2023. Channel measurement, modeling, and simulation for 6G: a survey and tutorial.

[94]Zhang JH, Lin JX, Tang P, et al., 2024a. Deterministic ray tracing: a promising approach to THz channel modeling in 6G deployment scenarios. IEEE Commun Mag, 62(2):48-54.

[95]Zhang JH, Miao HY, Tang P, et al., 2024b. New mid-band for 6G: several considerations from the channel propagation characteristics perspective. IEEE Commun Mag, early access.

[96]Zhang P, Chen JQ, Yang XL, et al., 2018. Recent research on massive MIMO propagation channels: a survey. IEEE Commun Mag, 56(12):22-29.

[97]Zhao YQ, Ke HQ, Xu W, et al., 2024. RIS-assisted cell-free MIMO: a survey. ZTE Commun, 22(1):77.

[98]Zheng Y, Wang CX, Yang RR, et al., 2023. Ultra-massive MIMO channel measurements at 5.3 GHz and a general 6G channel model. IEEE Trans Veh Technol, 72(1):20-34.

[99]Zhi KD, Pan CH, Ren H, et al., 2024. Performance analysis and low-complexity design for XL-MIMO with near-field spatial non-stationarities. IEEE J Sel Areas Commun, 42(6):1656-1672.

[100]Zhou ZH, Wang CX, Zhang L, et al., 2023. A novel SAGE algorithm for estimating parameters of wideband spatial nonstationary wireless channels with antenna polarization. IEEE Trans Antenn Propag, 71(9):7457-7472.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE