Full Text:   <60>

Summary:  <93>

CLC number: TP391.4;O35

On-line Access: 2026-01-08

Received: 2025-06-17

Revision Accepted: 2025-10-24

Crosschecked: 2026-01-08

Cited: 0

Clicked: 169

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xinhai CHEN

https://orcid.org/0000-0002-2931-4893

Yunfei LIU

https://orcid.org/0009-0004-3873-2220

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.11 P.2159-2175

http://doi.org/10.1631/FITEE.2500419


HADF: a hash-adaptive dual fusion implicit network for super-resolution of turbulent flows


Author(s):  Yunfei LIU, Xinhai CHEN, Gen ZHANG, Qingyang ZHANG, Qinglin WANG, Jie LIU

Affiliation(s):  National Key Laboratory of Parallel and Distributed Computing, National University of Defense Technology, Changsha 410073, China; more

Corresponding email(s):   liuyunfei@nudt.edu.cn, chenxinhai16@nudt.edu.cn

Key Words:  Turbulence reconstruction, Deep learning, Unpaired data, Low-resolution consistency loss, Hash-adaptive spatial encoding, Dynamic feature fusion, Implicit neural representations


Yunfei LIU, Xinhai CHEN, Gen ZHANG, Qingyang ZHANG, Qinglin WANG, Jie LIU. HADF: a hash-adaptive dual fusion implicit network for super-resolution of turbulent flows[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(11): 2159-2175.

@article{title="HADF: a hash-adaptive dual fusion implicit network for super-resolution of turbulent flows",
author="Yunfei LIU, Xinhai CHEN, Gen ZHANG, Qingyang ZHANG, Qinglin WANG, Jie LIU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="11",
pages="2159-2175",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500419"
}

%0 Journal Article
%T HADF: a hash-adaptive dual fusion implicit network for super-resolution of turbulent flows
%A Yunfei LIU
%A Xinhai CHEN
%A Gen ZHANG
%A Qingyang ZHANG
%A Qinglin WANG
%A Jie LIU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 11
%P 2159-2175
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500419

TY - JOUR
T1 - HADF: a hash-adaptive dual fusion implicit network for super-resolution of turbulent flows
A1 - Yunfei LIU
A1 - Xinhai CHEN
A1 - Gen ZHANG
A1 - Qingyang ZHANG
A1 - Qinglin WANG
A1 - Jie LIU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 11
SP - 2159
EP - 2175
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500419


Abstract: 
Turbulence, a complex multi-scale phenomenon inherent in fluid flow systems, presents critical challenges and opportunities for understanding physical mechanisms across scientific and engineering domains. Although high-resolution (HR) turbulence data remain indispensable for advancing both theoretical insights and engineering solutions, their acquisition is severely limited by prohibitively high computational costs. While deep learning architectures show transformative potential in reconstructing high-fidelity flow representations from sparse measurements, current methodologies suffer from two inherent constraints: strict reliance on perfectly paired training data and inability to perform multi-scale reconstruction within a unified framework. To address these challenges, we propose HADF, a hash-adaptive dynamic fusion implicit network for turbulence reconstruction. Specifically, we develop a low-resolution (LR) consistency loss that facilitates effective model training under conditions of missing paired data, eliminating the conventional requirement for fully matched LR and HR datasets. We further employ hash-adaptive spatial encoding and dynamic feature fusion to extract turbulence features, mapping them with implicit neural representations for reconstruction at arbitrary resolutions. Experimental results demonstrate that HADF achieves superior performance in global reconstruction accuracy and local physical properties compared to state-of-the-art models. It precisely recovers fine turbulence details for partially unpaired data conditions and diverse resolutions by training only once while maintaining robustness against noise.

HADF:面向湍流重构的哈希自适应双融合隐式网络

刘云飞1,2,3,陈新海1,2,3,张根1,2,3,张庆阳1,2,3,王庆林1,2,3,刘杰1,2,3
1国防科技大学并行与分布计算全国重点实验室,湖南长沙市,410073
2国防科技大学高端装备数字化软件湖南省重点实验室,湖南长沙市,410073
3国防科技大学计算机学院,湖南长沙市,410073
摘要:湍流作为流体系统中一种复杂的多尺度现象,在科学与工程领域中理解其物理机制具有重大挑战,同时也带来重要机遇。尽管高分辨率湍流数据对于深化理论研究和推动工程应用具有关键意义,但其获取过程受到高计算成本的限制。近年来,深度学习方法在从稀疏测量中重构高保真流场方面展现出显著潜力,然而现有方法普遍存在两大局限:一是过度依赖完美配对的训练数据,二是难以在统一框架下实现多尺度重构。针对上述问题,本文提出一种面向湍流重构的哈希自适应双融合隐式网络—HADF。该方法引入低分辨率一致性损失,使模型能够在部分缺失配对数据的情况下实现稳定训练,从而摆脱对完全匹配的低分辨率和高分辨率数据集的依赖。同时,HADF结合哈希自适应空间编码与动态特征融合机制以高效提取湍流特征,并通过隐式神经表示实现任意分辨率下的连续重构。实验结果表明,HADF在全局重构精度与局部物理一致性方面均优于现有最先进的模型。该方法能够在仅一次训练的情况下,对部分未配对数据和多分辨率场景实现精确的湍流细节重构,并在存在噪声的条件下保持出色的鲁棒性。

关键词:湍流重构;深度学习;未配对数据;低分辨率一致性损失;哈希自适应空间编码;动态特征融合;隐式神经表示

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bode M, Gauding M, Lian ZY, et al., 2021. Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows. Proc Combust Inst, 38(2):2617-2625.

[2]Brunton SL, Noack BR, Koumoutsakos P, 2020. Machine learning for fluid mechanics. Annu Rev Fluid Mech, 52(1):477-508.

[3]Cant RS, Ahmed U, Fang J, et al., 2022. An unstructured adaptive mesh refinement approach for computational fluid dynamics of reacting flows. J Comput Phys, 468:111480.

[4]Chen XH, Chen RL, Wan Q, et al., 2021a. An improved data-free surrogate model for solving partial differential equations using deep neural networks. Sci Rep, 11(1):19507.

[5]Chen XH, Gong CY, Wan Q, et al., 2021b. Transfer learning for deep neural network-based partial differential equations solving. Adv Aerodynam, 3:36.

[6]Chen XH, Wang ZC, Deng L, et al., 2024. Towards a new paradigm in intelligence-driven computational fluid dynamics simulations. Eng Appl Comput Fluid Mech, 18(1):2407005.

[7]Chen YB, Liu SF, Wang XL, 2021. Learning continuous image representation with local implicit image function. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.8624-8634.

[8]Chung WT, Mishra AA, Ihme M, 2022. Interpretable data-driven methods for subgrid-scale closure in LES for transcritical LOX/GCH4 combustion. Combust Flame, 239:111758.

[9]Chung WT, Ihme M, Jung KS, et al., 2023a. BLASTNet simulation dataset (2.0). Zenodo.

[10]Chung WT, Akoush B, Sharma P, et al., 2023b. Turbulence in focus: benchmarking scaling behavior of 3D volumetric super-resolution with BLASTNet 2.0 data. Proc 37th Int Conf on Neural Information Processing Systems, p.77430-77484.

[11]Davidson P, 2015. Turbulence: an Introduction for Scientists and Engineers (2nd Ed.). Oxford University Press.

[12]Erichson NB, Mathelin L, Yao ZW, et al., 2020. Shallow neural networks for fluid flow reconstruction with limited sensors. Proc Roy Soc A, 476(2238):20200097.

[13]Fukami K, Taira K, 2024. Single-snapshot machine learning for super-resolution of turbulence. J Fluid Mech, 1001:A32.

[14]Fukami K, Taira K, 2025. Observable-augmented manifold learning for multi-source turbulent flow data. J Fluid Mech, 1010:R4.

[15]Fukami K, Fukagata K, Taira K, 2019. Super-resolution reconstruction of turbulent flows with machine learning. J Fluid Mech, 870:106-120.

[16]Fukami K, Fukagata K, Taira K, 2023. Super-resolution analysis via machine learning: a survey for fluid flows. Theor Comput Fluid Dynam, 37(4):421-444.

[17]Fukami K, Goto S, Taira K, 2024. Data-driven nonlinear turbulent flow scaling with Buckingham Pi variables. J Fluid Mech, 984:R4.

[18]Jung KS, Kim SO, Lu TF, et al., 2021. On the flame stabilization of turbulent lifted hydrogen jet flames in heated coflows near the autoignition limit: a comparative DNS study. Combust Flame, 233:111584.

[19]Liu HC, Sun B, Cai WW, 2019. kHz-rate volumetric flame imaging using a single camera. Opt Commun, 437:33-43.

[20]Liu N, Ma L, 2020. Regularized tomographic PIV for incompressible flows based on conservation of mass. Appl Opt, 59(6):1667-1677.

[21]Morimoto M, Fukami K, Zhang K, et al., 2021. Convolutional neural networks for fluid flow analysis: toward effective metamodeling and low dimensionalization. Theor Comput Fluid Dynam, 35(5):633-658.

[22]Müller T, Evans A, Schied C, et al., 2022. Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph, 41(4):102.

[23]Nguyen QH, Beksi WJ, 2023. Single image super-resolution via a dual interactive implicit neural network. Proc IEEE/CVF Winter Conf on Applications of Computer Vision, p.4925-4934.

[24]Page J, 2025. Super-resolution of turbulence with dynamics in the loss. J Fluid Mech, 1002:R3.

[25]Pan SW, Brunton SL, Kutz JN, 2023. Neural implicit flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data. J Mach Learn Res, 24(1):1607-1666.

[26]Pareja J, Johchi A, Li T, et al., 2019. A study of the spatial and temporal evolution of auto-ignition kernels using time-resolved tomographic OH-LIF. Proc Combust Inst, 37(2):1321-1328.

[27]Park K, Sinha U, Hedman P, et al., 2021a. HyperNerf: a higher-dimensional representation for topologically varying neural radiance fields. ACM Trans Graph, 40(6):238.

[28]Park K, Sinha U, Barron JT, et al., 2021b. Nerfies: deformable neural radiance fields. Proc IEEE/CVF Int Conf on Computer Vision, p.5845-5854.

[29]Savard B, Hawkes ER, Aditya K, et al., 2019. Regimes of premixed turbulent spontaneous ignition and deflagration under gas-turbine reheat combustion conditions. Combust Flame, 208:402-419.

[30]Shen LY, Pauly J, Xing L, et al., 2024. NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction. IEEE Trans Neur Netw Learn Syst, 35(1):770-782.

[31]Sitzmann V, Martel JNP, Bergman AW, et al., 2020. Implicit neural representations with periodic activation functions. Proc 34th Int Conf on Neural Information Processing Systems, p.7462-7473.

[32]Wang B, Hui X, Li F, et al., 2022. Research status and key technology analysis of dynamic combustion in aero-engine main combustor. J Aerosp Power, 37(11):2479-2487 (in Chinese).

[33]Xu Q, Zhuang ZJ, Pan YC, et al., 2023. Super-resolution reconstruction of turbulent flows with a Transformer-based deep learning framework. Phys Fluids, 35(5):055130.

[34]Xu WJ, Luo WY, Wang Y, et al., 2020. Data-driven three-dimensional super-resolution imaging of a turbulent jet flame using a generative adversarial network. Appl Opt, 59(19):5729-5736.

[35]Yang Z, Yang H, Yin ZP, 2023. Super-resolution reconstruction for the three-dimensional turbulence flows with a back-projection network. Phys Fluids, 35(5):055123.

[36]Zhang KW, Zhu DD, Min XK, et al., 2023. Implicit neural representation learning for hyperspectral image super-resolution. IEEE Trans Geosci Remote Sens, 61:5500212.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE