Full Text:   <4>

CLC number: 

On-line Access: 2025-11-05

Received: 2025-02-05

Revision Accepted: 2025-03-18

Crosschecked: 0000-00-00

Cited: 0

Clicked: 4

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2025 Vol.8 No.6 P.1024-1034

http://doi.org/10.1631/bdm.2500047


Bio-inspired magnetic soft robot with dual-modal locomotion for enhanced liquidair interface navigation


Author(s):  Chonglei Hao (???), Binhong Dou (???), Shenghao Yang (???), Haochen Wang (???), Lei Zhang (??), Bing Li (??), Qing Cao (??), Huayong Yang (???), Dong Han (??) & Fuzhou Niu (???)

Affiliation(s):  1 School of Robotics and Advanced Manufacture, Harbin Institute of Technology, Shenzhen 518055, China 2 School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China 3 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China 4 School of Mechanical Engine

Corresponding email(s):   dong_han@zju.edu.cn, fzniu@usts.edu.cn

Key Words:  Magnetic soft robot Dual bio-inspired locomotion Interface navigation Water strider Pyrrhalta nymphaeae larvae


Share this article to: More

Chonglei Hao (???), Binhong Dou (???), Shenghao Yang (???), Haochen Wang (???), Lei Zhang (??), Bing Li (??), Qing Cao (??), Huayong Yang (???), Dong Han (??) & Fuzhou Niu (???) . Bio-inspired magnetic soft robot with dual-modal locomotion for enhanced liquidair interface navigation[J]. Journal of Zhejiang University Science D, 2025, 8(6): 1024-1034.

@article{title="Bio-inspired magnetic soft robot with dual-modal locomotion for enhanced liquidair interface navigation",
author="Chonglei Hao (???), Binhong Dou (???), Shenghao Yang (???), Haochen Wang (???), Lei Zhang (??), Bing Li (??), Qing Cao (??), Huayong Yang (???), Dong Han (??) & Fuzhou Niu (???) ",
journal="Journal of Zhejiang University Science D",
volume="8",
number="6",
pages="1024-1034",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/bdm.2500047"
}

%0 Journal Article
%T Bio-inspired magnetic soft robot with dual-modal locomotion for enhanced liquidair interface navigation
%A Chonglei Hao (???)
%A Binhong Dou (???)
%A Shenghao Yang (???)
%A Haochen Wang (???)
%A Lei Zhang (??)
%A Bing Li (??)
%A Qing Cao (??)
%A Huayong Yang (???)
%A Dong Han (??) & Fuzhou Niu (???)
%J Journal of Zhejiang University SCIENCE D
%V 8
%N 6
%P 1024-1034
%@ 1869-1951
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/bdm.2500047

TY - JOUR
T1 - Bio-inspired magnetic soft robot with dual-modal locomotion for enhanced liquidair interface navigation
A1 - Chonglei Hao (???)
A1 - Binhong Dou (???)
A1 - Shenghao Yang (???)
A1 - Haochen Wang (???)
A1 - Lei Zhang (??)
A1 - Bing Li (??)
A1 - Qing Cao (??)
A1 - Huayong Yang (???)
A1 - Dong Han (??) & Fuzhou Niu (???)
J0 - Journal of Zhejiang University Science D
VL - 8
IS - 6
SP - 1024
EP - 1034
%@ 1869-1951
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/bdm.2500047


Abstract: 
Small-scale magnetic soft robots are promising candidates for minimally invasive medical applications; however, they struggle to achieve efficient locomotion across various interfaces. In this study, we propose a magnetic soft robot that integrates two distinct bio-inspired locomotion modes for enhanced interface navigation. Inspired by water striders superhydrophobic legs and the meniscus climbing behavior of Pyrrhalta nymphaeae larvae, we developed a rectangular sheet-based robot with hy drophobic surface treatment and novel control strategies. The proposed robot implements two locomotion modes: a bipedal peristaltic locomotion mode (BPLM) and a single-region contact-vibration locomotion mode (SCLM). The BPLM achieves stable movement at 20 mm/s through coordinated frontrear contact points, whereas the SCLM reaches an ultrafast speed of 52 mm/s by optimizing surface tension interactions. The proposed robot demonstrates precise trajectory control with mini mal deviations and successfully navigates confined spaces while manipulating objects. Theoretical analysis and experimental validation demonstrate that the integration of triangular wave control signals and steady-state components enables smooth transitions between locomotion modes. This study presents a new paradigm for bio-inspired design of small-scale robots and demonstrates the potential for medical applications requiring precise navigation across multiple terrains.

用于增强液-气界面导航的双模态仿生磁性软体机器人

作者:郝崇磊1,窦斌宏1,杨圣豪1,王皓辰2,张磊1,李兵1,曹青3,4,杨华勇3,4,韩冬3,4,牛福洲2,3 机构:1哈尔滨工业大学(深圳)机器人与先进制造学院,中国深圳市,518055;2苏州科技大学机械工程学院,中国苏州市,215009;3浙江大学流体动力基础件与机电系统全国重点实验室,中国杭州市,310058;4浙江大学机械工程学院,中国杭州市,310058 目的:小型磁性软体机器人在微创医学中具有应用前景,但其在不同界面上的高效运动仍是挑战。本研究旨在开发一种集成两种仿生运动模式的磁性软体机器人,以增强其界面导航能力。 创新点:提出了一种集成两种不同仿生运动模式(水黾的超疏水腿部和莲草萤叶甲幼虫的启发)的弯月面爬升行为启发式磁性软体机器人。该机器人采用矩形薄片结构、疏水表面处理和新颖的控制策略,实现了两种运动模式:双足蠕动模式(BPLM)和单区域接触振动模式(SCLM),从而增强了多界面导航能力。 方法:开发了基于矩形薄片的磁性软体机器人,并对其表面进行疏水处理。通过理论分析和实验验证,探索了控制策略对运动模式的影响。研究了三角波控制信号与稳态分量的结合,实现了两种运动模式间的平稳过渡。测试了机器人在BPLM(通过前后接触点的协调作用)和SCLM(通过优化表面张力相互作用)下的运动速度、精确轨迹控制和狭小空间内的物体操作能力。 结论:该机器人成功实现了BPLM(稳定速度20 mm/s)和SCLM(超高速52 mm/s)两种运动模式。机器人表现出精确的轨迹控制和最小偏差,并能够成功执行物体操作。本研究为小型机器人仿生设计提供了新的范式,并展现了其在需要跨越多地形进行精准导航的医疗应用中的巨大潜力。
关键词:磁性软体机器人;双模态仿生运动模式;界面导航;水黾;莲草萤叶甲幼虫;弯月面爬升;物体操作

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE