CLC number: O212.7
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5354
PAN Jian-min. ESTIMATION METHOD FOR MIXED-EFFECT COEFFICIENT SEMIPARAMETRIC REGRESSION MODEL[J]. Journal of Zhejiang University Science A, 2000, 1(1): 71-77.
@article{title="ESTIMATION METHOD FOR MIXED-EFFECT COEFFICIENT SEMIPARAMETRIC REGRESSION MODEL",
author="PAN Jian-min",
journal="Journal of Zhejiang University Science A",
volume="1",
number="1",
pages="71-77",
year="2000",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2000.0071"
}
%0 Journal Article
%T ESTIMATION METHOD FOR MIXED-EFFECT COEFFICIENT SEMIPARAMETRIC REGRESSION MODEL
%A PAN Jian-min
%J Journal of Zhejiang University SCIENCE A
%V 1
%N 1
%P 71-77
%@ 1869-1951
%D 2000
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2000.0071
TY - JOUR
T1 - ESTIMATION METHOD FOR MIXED-EFFECT COEFFICIENT SEMIPARAMETRIC REGRESSION MODEL
A1 - PAN Jian-min
J0 - Journal of Zhejiang University Science A
VL - 1
IS - 1
SP - 71
EP - 77
%@ 1869-1951
Y1 - 2000
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2000.0071
Abstract: Consider the mixed-effect coefficient semiparametric regression model Z=X'α+Y'β+g(T)+e, where X, Y and T are random vectors on Rp×Rq×[0,1], α is a p-dimensional fixed-effect parameter, β is a q-dimensional random-effect parameter (Eβ=b, Cov(β)=∑), g(.) is an unknown function on [0,1], e is a random error with mean zero and variance σ2, and (X,Y,T) and (β,e), β and e are mutually independent. We estimate α, b and g(.) by the nearest neighbor and the least square method. In this paper, we prove that estimations of α, b have asymptotic normality and obtain the best convergence rate n−1/3 for the estimation of g(.).
[1]Chen, H., 1988. Convergence rates for parametric components in partly linear model. Ann.Statist., 16(1): 136-146.
[2]Dvoretzky, A., 1972. Proc. Sixth Berkeley Symp. Math. Statist. Prob., Univ. of California Press. p.513-555.
[3]Gao, J. T. and Zhao, L. C., 1992. Adaptive estimators in a partly linear models. Science in China (ser. A), 8: 791-803(in Chinese with English abstract).
[4]Gao, J. T., 1993. Convergence rates of estimators in a class of mixed regression models. Chinese Ann. Math. (Ser. A), 14(1): 81-92(in Chinese with English abstract).
[5]Gao, J.T., Hong, S.Y. and Liang, H., 1995. Convergence rates of a class of estimators in partly linear models. ACTA Math. Sin., 38(5): 658-669.
[6]Hong, S. Y., 1991. Estimation theory in a class of semiparametric regression model. Science in China (ser. A), 12: 1258-1272(in Chinese with English abstract).
[7]Hong, S. Y. and Cheng, P., 1994. The convergence rate of estimation for parameter in a semi-parametric model. Chinese J. Appl. Probab. Statist., 10(1): 62-71.
[8]Johansen, S., 1982. Asymptotic inference on random coefficient regression models. Scand. J. Statist., 9: 201-207.
[9]Rao, C.R., 1965. The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika, 52: 447-458.
[10]Swamy, P.A.V.B., 1971. Statistical Inference in Random Coefficient Regression Models. Springer-Verlage. New York.
[11]Speckman, P., 1988. Kernel smoothing in a partial linear models. J. Roy. Statist. Soc. (Ser. B), 50: 413-436.
[12]Tao, B. and Cheng, P., 1981. An inequality of moments. Chinese Ann.Math., 2(4):, 451-461.
[13]Wei, L. S. and Su, C., 1986. On the pointwisise Lp covergence rates of estimate of nonparametric regression function. J. Math. Res. & Exp., 2: 117-123.
[14]Zhuang, D. C. and Mao, S. S., 1996. Estimation of parameters for mixed-effect coefficient linear model. Chinese J. Appl. Probab. Statist., 12(1): 81-87(in Chinese with English abstract).
Open peer comments: Debate/Discuss/Question/Opinion
<1>