CLC number: O231.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4623
SI Shou-kui. BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION[J]. Journal of Zhejiang University Science A, 2001, 2(2): 161-164.
@article{title="BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION",
author="SI Shou-kui",
journal="Journal of Zhejiang University Science A",
volume="2",
number="2",
pages="161-164",
year="2001",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2001.0161"
}
%0 Journal Article
%T BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION
%A SI Shou-kui
%J Journal of Zhejiang University SCIENCE A
%V 2
%N 2
%P 161-164
%@ 1869-1951
%D 2001
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2001.0161
TY - JOUR
T1 - BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION
A1 - SI Shou-kui
J0 - Journal of Zhejiang University Science A
VL - 2
IS - 2
SP - 161
EP - 164
%@ 1869-1951
Y1 - 2001
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2001.0161
Abstract: In this paper, we consider the timoshenko equation of a nonuniform beam,with clamped boundary condition at one end and with feedback controls at the other end. It is proved that the system is backward wellposedness when the feedback controls are weak enough.
[1] Adams,R.A.,1975.Sobolev Space.Academic Press,New York.
[2] Chen,G.,Delfour,M.C.,Krall,A.M.,et al.G.,1987.Modeling,stabilization and control of serially connected beams.SIAM J.Control Optem.,25:526-546.
[3] Feng,D.X.,Shi,D.H.,Zhang,W.T.,1998.Boundary feedback stabilization of Timoshenko beam with boundary dissipation.Sicence in China(Series A),41:483-490.
[4] Kim,J.U.and Renardy,Y.,1987.Boundary control of the Timoshenko Beam.SIAM J.Control Optim.,25:147-1429.
[5] Komornid,V.,1994.Exact Controllability and Stabilization-The Multiplier Method.RAM,Masson,Paris.
[6] Liu,K.,Russell,David L,1998.New Meaning of Exact Controllability of Linear Systems in Hilbert Spaces,Control of Distributed Parament and Stochastic Systems.Proceedings of the IFIP WG 7.2.International Conference,Hangzhou,China,Edited by Chen,S.et al.,Kluwer Academic Publishers,Netherlands,p.103-110
[7] Pazy,A.,1983.Semigroups of linear operators and applications to partial differential equations.Springer,New York.
[8] Rao,B.,1996.A compact perturbation method for the boundary stabilization of the Rayleigh Beam equation.Appl.Math.Optim.,33:253-264.
[9] Shi,D.H.,Hou,S.H.,Feng,D.X.,1998.Feedback stabilization of a Timoshenko beam with an end mass.Int.J.Control,69:285-300.
[10] Zabczyk,J.,1976.Remarks on the algebraic Riccati equation in Hilbert space.Appl.Math.Optim.,2:251-258.
Open peer comments: Debate/Discuss/Question/Opinion
<1>