Full Text:   <2525>

CLC number: O231.4

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 4623

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2001 Vol.2 No.2 P.161-164

http://doi.org/10.1631/jzus.2001.0161


BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION


Author(s):  SI Shou-kui

Affiliation(s):  Dept.of Appl.Math.,Zhejiang University,Hangzhou 310027,China; more

Corresponding email(s): 

Key Words:  backward wellposedness, nonuniform beam, Timoshenko equation, c0-semigroup


Share this article to: More

SI Shou-kui. BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION[J]. Journal of Zhejiang University Science A, 2001, 2(2): 161-164.

@article{title="BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION",
author="SI Shou-kui",
journal="Journal of Zhejiang University Science A",
volume="2",
number="2",
pages="161-164",
year="2001",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2001.0161"
}

%0 Journal Article
%T BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION
%A SI Shou-kui
%J Journal of Zhejiang University SCIENCE A
%V 2
%N 2
%P 161-164
%@ 1869-1951
%D 2001
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2001.0161

TY - JOUR
T1 - BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION
A1 - SI Shou-kui
J0 - Journal of Zhejiang University Science A
VL - 2
IS - 2
SP - 161
EP - 164
%@ 1869-1951
Y1 - 2001
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2001.0161


Abstract: 
In this paper, we consider the timoshenko equation of a nonuniform beam,with clamped boundary condition at one end and with feedback controls at the other end. It is proved that the system is backward wellposedness when the feedback controls are weak enough.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Adams,R.A.,1975.Sobolev Space.Academic Press,New York.

[2] Chen,G.,Delfour,M.C.,Krall,A.M.,et al.G.,1987.Modeling,stabilization and control of serially connected beams.SIAM J.Control Optem.,25:526-546.

[3] Feng,D.X.,Shi,D.H.,Zhang,W.T.,1998.Boundary feedback stabilization of Timoshenko beam with boundary dissipation.Sicence in China(Series A),41:483-490.

[4] Kim,J.U.and Renardy,Y.,1987.Boundary control of the Timoshenko Beam.SIAM J.Control Optim.,25:147-1429.

[5] Komornid,V.,1994.Exact Controllability and Stabilization-The Multiplier Method.RAM,Masson,Paris.

[6] Liu,K.,Russell,David L,1998.New Meaning of Exact Controllability of Linear Systems in Hilbert Spaces,Control of Distributed Parament and Stochastic Systems.Proceedings of the IFIP WG 7.2.International Conference,Hangzhou,China,Edited by Chen,S.et al.,Kluwer Academic Publishers,Netherlands,p.103-110

[7] Pazy,A.,1983.Semigroups of linear operators and applications to partial differential equations.Springer,New York.

[8] Rao,B.,1996.A compact perturbation method for the boundary stabilization of the Rayleigh Beam equation.Appl.Math.Optim.,33:253-264.

[9] Shi,D.H.,Hou,S.H.,Feng,D.X.,1998.Feedback stabilization of a Timoshenko beam with an end mass.Int.J.Control,69:285-300.

[10] Zabczyk,J.,1976.Remarks on the algebraic Riccati equation in Hilbert space.Appl.Math.Optim.,2:251-258.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE