CLC number: TP273
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 9
Clicked: 5658
ZHANG Ke-qin, ZHUANG Kai-yu, SU Hong-ye, CHU Jian, GAO Hong. Sliding mode identifier for parameter uncertain nonlinear dynamic systems with nonlinear input[J]. Journal of Zhejiang University Science A, 2002, 3(4): 426-430.
@article{title="Sliding mode identifier for parameter uncertain nonlinear dynamic systems with nonlinear input",
author="ZHANG Ke-qin, ZHUANG Kai-yu, SU Hong-ye, CHU Jian, GAO Hong",
journal="Journal of Zhejiang University Science A",
volume="3",
number="4",
pages="426-430",
year="2002",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2002.0426"
}
%0 Journal Article
%T Sliding mode identifier for parameter uncertain nonlinear dynamic systems with nonlinear input
%A ZHANG Ke-qin
%A ZHUANG Kai-yu
%A SU Hong-ye
%A CHU Jian
%A GAO Hong
%J Journal of Zhejiang University SCIENCE A
%V 3
%N 4
%P 426-430
%@ 1869-1951
%D 2002
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2002.0426
TY - JOUR
T1 - Sliding mode identifier for parameter uncertain nonlinear dynamic systems with nonlinear input
A1 - ZHANG Ke-qin
A1 - ZHUANG Kai-yu
A1 - SU Hong-ye
A1 - CHU Jian
A1 - GAO Hong
J0 - Journal of Zhejiang University Science A
VL - 3
IS - 4
SP - 426
EP - 430
%@ 1869-1951
Y1 - 2002
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2002.0426
Abstract: This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonlinear system; an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.
[1] Chern, T. L., Wu, Y.C., 1991. Design of integral variable structure controller and application to electrohydraulic velocity servosystems. IEE Proceedings-D, 138(5):439-444.
[2] Choi, J.H., Misawa, E.A., Young, G.E., 1999. A study on sliding mode state estimation. J. of Dynamic Systems, Measurement, and Control, 121(1): 121-125.
[3] Furuta, K., Pan, Y.D., 2000. Variable structure control with sliding sector. Automatica, 36(2):211-228.
[4] Gao, W.B., Hung, J.G., 1993. Variable structure control of nonlinear systems: a new approach. IEEE Transactions on Industrial Electronic, 40(1):45-55.
[5] Hsu, K.C., 1997. Decentralized variable structure control design for uncertain large-scale systems with series nonlinearities. Int. J. Control, 68(6):1231-1240.
[6] Hsu, K.C., 1998. Variable structure control design for uncertain dynamic systems with sector nonlinearities. Automatica, 34(4):505-508.
[7] Hu, J.B., Su, H.Y., Chu, J., 2000. A robust gain-scheduling control based on VSC and fuzzy local controller network. Journal of Zhejiang University SCIENCE, 1(3):249-253.
[8] Lu, X., Spurgeon, S.K., 1999. Output feedback stabilization of MIMO nonlinear systems via dynamic sliding mode. Int. J. Robust Nonlinear Control, 9(2):275-305.
[9] Misawa, E.A., 1988. Nonlinear state estimation using sliding observers. Massachusetts Institute of Technology, Ph.d. thesis.
[10] Srewal, M.S., Glover, K., 1976. Identifiability of linear and nonlinear dynamical systems. IEEE Trans. on Automatic Control, 21(4):833-837.
[11] Utkin, V. I., 1977. Variable structure systems with sliding modes. IEEE Trans, Automatic Control, 22(2):212-222.
[12] Xu, J.X., 1993. Parameter identification methodologies based on variable structure control. Int. J. Control, 57(5):1207-1220.
[13] Xu, J.X., 1998. Self-tuning variable structure control method for a class of nonlinear systems. Int. J. Robust Nonlinear Control,8(6):1133-1153.
Open peer comments: Debate/Discuss/Question/Opinion
<1>