CLC number: TP273
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 2
Clicked: 5671
QI Dong-lian, ZHAO Guang-zhou. Control uncertain continuous-time chaotic dynamical system[J]. Journal of Zhejiang University Science A, 2003, 4(4): 437-440.
@article{title="Control uncertain continuous-time chaotic dynamical system",
author="QI Dong-lian, ZHAO Guang-zhou",
journal="Journal of Zhejiang University Science A",
volume="4",
number="4",
pages="437-440",
year="2003",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2003.0437"
}
%0 Journal Article
%T Control uncertain continuous-time chaotic dynamical system
%A QI Dong-lian
%A ZHAO Guang-zhou
%J Journal of Zhejiang University SCIENCE A
%V 4
%N 4
%P 437-440
%@ 1869-1951
%D 2003
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2003.0437
TY - JOUR
T1 - Control uncertain continuous-time chaotic dynamical system
A1 - QI Dong-lian
A1 - ZHAO Guang-zhou
J0 - Journal of Zhejiang University Science A
VL - 4
IS - 4
SP - 437
EP - 440
%@ 1869-1951
Y1 - 2003
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2003.0437
Abstract: The new chaos control method presented in this paper is useful for taking advantage of chaos. Based on sliding mode control theory, this paper provides a switching manifold controlling strategy of chaotic system, and also gives a kind of adaptive parameters estimated method to estimate the unknown systems' parameters by which chaotic dynamical system can be synchronized. Taking the Lorenz system as example, and with the help of this controlling strategy, we can synchronize chaotic systems with unknown parameters and different initial conditions.
[1]Fang, J. and Hong, Y., 1999. Switching manifold approach to chaos synchronization. Physical Review E, 59(3): 2523-2526.
[2]He, B. and Chen, Y., 2002. Using chaos to improve measurement precision. Journal of Zhejiang University SCIENCE, 3(1): 47-51.
[3]Kolumban, G. and Michael, P. K., 1998. The role of synchronization in digital communications using chaos. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 45(11):235-239.
[4]Lai, Y. C. and Grebogi, C., 1993. Synchronization of chaotic trajectories using control. Physical Review Letter, 47(4):2357-2360.
[5]Leung, H. and Lo, T., 1993. Chaotic radar signal processing over the sea. IEEE J. Oceanic Eng., 18(2):287-295.
[6]Maybhate, A. and Amritkar, R.E., 1999. Use of synchronization and adaptive control in parameter estimation from a time series. Physical Review E,59(1):284-292.
[7]Pecora, L.M. and Carroll, T. L., 1991. Driving systems with chaotic signals. Physical Review A, 44(4): 2375-2383.
[8]Tong, Q.Y., Fan, Y.L. and Li, Y.,2002. Application of chaotic theory to parameter estimation. Journal of Zhejiang University SCIENCE,3(1): 42-46.
Open peer comments: Debate/Discuss/Question/Opinion
<1>