CLC number: O177.5; O211
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4225
MA Zhi-hao, WANG Cheng, HOU Li-ying. Random quadralinear forms and schur product on tensors[J]. Journal of Zhejiang University Science A, 2004, 5(3): 350-352.
@article{title="Random quadralinear forms and schur product on tensors",
author="MA Zhi-hao, WANG Cheng, HOU Li-ying",
journal="Journal of Zhejiang University Science A",
volume="5",
number="3",
pages="350-352",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.0350"
}
%0 Journal Article
%T Random quadralinear forms and schur product on tensors
%A MA Zhi-hao
%A WANG Cheng
%A HOU Li-ying
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 3
%P 350-352
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.0350
TY - JOUR
T1 - Random quadralinear forms and schur product on tensors
A1 - MA Zhi-hao
A1 - WANG Cheng
A1 - HOU Li-ying
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 3
SP - 350
EP - 352
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.0350
Abstract: In this work, we made progress on the problem that lr⊗lp⊗lq is a banach algebra under schur product. Our results extend Tonge's results. We also obtained estimates for the norm of the random quadralinear form A:lrM×lpN×lqK×lsH→C, defined by: A(ei, ej, ek, es)=aijks, where the (aijks)'s are uniformly bounded, independent, mean zero random variables. We proved that under some conditions lr⊗lp⊗lq⊗ls is not a banach algebra under schur product.
[1] Almasri, I., Li, J.L., Tonge, A.M., 2000. Random trilinear forms and the schur multiplication of tensors.Internat.J. Math. and Sci.,23:69-76.
[2] Bennett, G., Goodman, V., Newman, C.M., 1975. Norms of random matrices.Pacific J. Math.,59:359-365.
[3] Bennett, G., 1977. Schur multipliers.Duke Math. J.,44:603-639.
[4] Mantero, A.M., Tonge, A.M., 1980. The schur multiplication in tensor algebras.Studia Math.,68(1):1-24.
[5] Varopoulos, N.T., 1974. On an inequality of von Neumann and an application of the Matric theory of tensor products to operators theory.J. Funct. Anal.,16:83-100.
Open peer comments: Debate/Discuss/Question/Opinion
<1>