Full Text:   <3782>

CLC number: Q815; TP278

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 14

Clicked: 5727

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2004 Vol.5 No.4 P.378-389

http://doi.org/10.1631/jzus.2004.0378


Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms


Author(s):  ANDRÉ,S-TORO B., GIRÓ,N-SIERRA J.M., FERNÁ,NDEZ-BLANCO P., LÓ,PEZ-OROZCO J.A., BESADA-PORTAS E.

Affiliation(s):  Department of Computer Architecture and System Engineering, Physical Sciences, Complutense University of Madrid, Spain

Corresponding email(s):   deandres@dacya.ucm.es, pfernandez@cesfelipesegundo.com

Key Words:  Multiobjective optimization, Genetic algorithms, Industrial control, Multivariable control systems, Fermentation processes


Share this article to: More

ANDRÉS-TORO B., GIRÓN-SIERRA J.M., FERNÁNDEZ-BLANCO P., LÓPEZ-OROZCO J.A., BESADA-PORTAS E.. Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms[J]. Journal of Zhejiang University Science A, 2004, 5(4): 378-389.

@article{title="Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms",
author="ANDRÉS-TORO B., GIRÓN-SIERRA J.M., FERNÁNDEZ-BLANCO P., LÓPEZ-OROZCO J.A., BESADA-PORTAS E.",
journal="Journal of Zhejiang University Science A",
volume="5",
number="4",
pages="378-389",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.0378"
}

%0 Journal Article
%T Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms
%A ANDRÉ
%A S-TORO B.
%A GIRÓ
%A N-SIERRA J.M.
%A FERNÁ
%A NDEZ-BLANCO P.
%A LÓ
%A PEZ-OROZCO J.A.
%A BESADA-PORTAS E.
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 4
%P 378-389
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.0378

TY - JOUR
T1 - Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms
A1 - ANDRÉ
A1 - S-TORO B.
A1 - GIRÓ
A1 - N-SIERRA J.M.
A1 - FERNÁ
A1 - NDEZ-BLANCO P.
A1 - LÓ
A1 - PEZ-OROZCO J.A.
A1 - BESADA-PORTAS E.
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 4
SP - 378
EP - 389
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.0378


Abstract: 
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Andrés Toro, B. De, 1996. Modelización, Optimizacióny Control de Un Proceso Cervecero Industrial. PhD., Univ. Complutense de Madrid, Spain.

[2] Andrés Toro, B. De, Cámara Hurtado, M., Díez Marqués, C., Fernández Conde, C., Girón Sierra, J.M., Torija Isasa, M.T., 1997. Evolución del contenido de az

[3] Andrés Toro, B. De, Girón-Sierra, J.M., López Orozco, J.A., Peinado, J.M., García Ochoa, F., 1998a. A kinetic model for beer fermentation under industrial operational conditions.Mathematics and Computer Simulation,48:65-74.

[4] Andrés Toro, B. De, Girón-Sierra, J.M., López Orozco, J.A., Fernández Conde, C., Fernández Blanco, P., 1998b. A Fast Genetic Optimization for Batch Fermentation Processes. Proc. 7th Intl. Conf. on Computer Applications in Biotechnology CAB7, IFAC, Osaka, Japan, p.61-66.

[5] Andrés Toro, B. De, Girón-Sierra, J.M., Torija Isasa, M.T. and Cámara Hurtado, M., 1999a. Modelizacióny Control de la fermentación industrial de la Cerveza. Estudio experimental.Alimentación, Equiposy Tecnología,4:93-99.

[6] Andrés Toro, B. De, Girón-Sierra, J.M., López Orozco, J.A., Fernández Blanco, P., 1999b. A Genetic Optimization Method for Dynamic Processes. The 14th World Congress IFAC, Pergamon Ed., Beijing, China.

[7] Bastin, G., Dochain, D., 1986. On-line Estimation of microbial specific growth rates.Automatica,22(6):705-709.

[8] Bastin, G., Dochain, D., 1990. On-line Estimation and Adaptative Control of Bioreactors. Elsevier, Amsterdam.

[9] Besada Portas, E., López Orozco, J.A., Andrés Toro, B. De, 2002. A Versatile Toolbox for Solving Industrial Problems with Several Evolutionary Techniques.In: Evolutionary Methods for Design, Optimization and Control, Ed. International Centre for Numerical Methods in Engineering (CIMNE), Barcelona, Spain.

[10] Carrillo, G.E., 1999. Optimal Control of Fermentation Process. PhD, Control Engineering Research Centre, London.

[11] Cheruy, A., 2000. Control du Profil Arme de la Bi

[12] Coello, C.A., 2000. An updated survey of GA-based multiobjective optimization techniques.ACM Computing Surveys,32:109-143.

[13] Dochain, D., Bastin, G., 1984. Adaptive identification and control algorithms for nonlinear bacterial growth systems.Automatica,20(5):621-634.

[14] Engasser, J.M., Marc, I., Moll, M., Duteurtre, B., 1981. Proceedings EBC Congress, p.579-583.

[15] Fonseca, C.M., Fleming, P.J., 1998. Multiobjective Optimization and Multiple Constraint Handling with Evolutionary AlgorithmPart I: Unified Formulation.In: IEEE Transactions on Systems, Man, and Cybernetics. Part A: Systems and Humans,28(1):3-18.

[16] Gauthier, J.P., Hammouri, H., Othman, S., 1992. A simple observer for nonlinear systems: applications to Bioreactors.IEEE T. Autom.Control,37(6):875-880.

[17] Gee, D.A., Ramírez, F.W., 1988. Optimal temperature control for batch beer fermentation.Biotech. and Bioeng.,31:224-234.

[18] Gee, D.A., Ramírez, F.W., 1994. A flavour model for beer fermentation.J. Ins. Brewing,100:321-329.

[19] Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Co., Inc., Redwood City, Ca.

[20] Hough, J.S.,Briggs, D.E., Stevens, R., 1971. Malting and Brewing Science. Chapman & Hall.Johnson, A., 1987. The control of fed-batch fermentation processesa survey.Automatica,23(6):691-705.

[21] Knowles, J.D., Corne, D.W., 2000. Approximating the nondominated front using the pareto archived evolution strategy.IEEE Evolutionary Computation,8(2):149-172.

[22] Meilgaard, M.C., Reid, D.S., Wyborski, K.A., 1982. Reference Standards for beer flavor terminology systems.Journal of American Society of Brewing Chemist,40:119-128.

[23] Michalewicz, Z., 1999. Genetic Algoritm + Data Structures = Evolution Programs. Springer-Verlag, Berlin.

[24] Miettinen, K.M., 1999. Nonlinear Multiobjective Optimization. Academic Publishers, Kluwer.

[25] Moscato, P., 1989. On Evolution, Search, Optimization, Genetic Algorithms and Material Arts: towards Memetic Algorithms.In: Technical Report Computation Program. Californian Institute of Technology, U.S.A.

[26] Park, S., Ramirez, W.F., 1988. Optimal production of secreted protein in fed-batch reactors.AIChE Journal,34:1550-1558.

[27] Sonnleitner, B., Kappeli, O., 1986. Growth of saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis.Biotech. Bioeng.,28:927-937.

[28] Steinmeyer, D.E., Shuler, M.L., 1989. Structured model for saccharomyces cerevisiae.Chem. Eng. Sci.,44(9):2017-2030.

[29] Steyer, J.P., Queinnec, I., Simoes, D., 1993. Biotech: a real-time application of artificial intelligence for fermentation processes.Control Eng. Practice,1(2):315-321.

[30] Tenney, R.I., 1985. Rationale of the brewery fermentation.J. Am. Soc. Brew. Chem.,43:57-60.

[31] Titica, M., Landau, S., Trelea, I.C., Latrille, E., Corrieu, G., Cheruy, A., 2000. Kinetics of aroma production in beer batch fermentation: Simulation and sensitivity to the operating conditions.J. Am. Soc. Brew. Chem.,58(4):167-174.

[32] Trelea, I.C., Latrille, E., Landau, S., Corrieu, G., 2001a. Reliable estimation of the key variables.BioprocessBiosystems Engineering,24:227-237.

[33] Trelea, I.C., Titica, M., Landau, S., Latrille, E., Corrieu G., Cheruy, A., 2001b. A predictive modelling of brewing fermentation: from knowledge-based to black-box models.Mathematics and Computers in Simulation,56:405-424.

[34] Trelea, I.C., Latrille, E., Landau S., Corrieu, G., 2002. Prediction of confidence limits for diacetyl concentration during beer fermentation.J. Am. Soc. Brew. Chem.,60:77-87.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE