CLC number: TP391.41
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 5154
DU Xin, LI Hong-dong, GU Wei-kang. A simple rectification method for linear multi-baseline stereovision system[J]. Journal of Zhejiang University Science A, 2004, 5(5): 567-571.
@article{title="A simple rectification method for linear multi-baseline stereovision system",
author="DU Xin, LI Hong-dong, GU Wei-kang",
journal="Journal of Zhejiang University Science A",
volume="5",
number="5",
pages="567-571",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.0567"
}
%0 Journal Article
%T A simple rectification method for linear multi-baseline stereovision system
%A DU Xin
%A LI Hong-dong
%A GU Wei-kang
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 5
%P 567-571
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.0567
TY - JOUR
T1 - A simple rectification method for linear multi-baseline stereovision system
A1 - DU Xin
A1 - LI Hong-dong
A1 - GU Wei-kang
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 5
SP - 567
EP - 571
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.0567
Abstract: The linear multi-baseline stereo system introduced by the CMU-RI group has been proven to be a very effective and robust stereovision system. However, most traditional stereo rectification algorithms are all designed for binocular stereovision system, and so, cannot be applied to a linear multi-baseline system. This paper presents a simple and intuitional method that can simultaneously rectify all the cameras in a linear multi-baseline system. Instead of using the general 8-parameter homography transform, a two-step virtual rotation method is applied for rectification, which results in a more specific transform that has only 3 parameters, and more stability. Experimental results for real stereo images showed the presented method is efficient.
[1] Ayache, N., Lustman, F., 1991. Trinocular stereo vision for robotics.IEEE T-PAMI,13:73-855.
[2] Fusiello, A., Trucco, E., Verri, A., 2000. A Compact Algorithm for Rectification of Stereo Pairs. Machine Vision and Application, USA.
[3] Hartley, R., Gupta, R., 1993. Computing Matched Epipolar Projections. Proceedings of IEEE CVPR, p.549-555.
[4] Hartley, R., 1997. Self-calibration of stationary cameras.IJCV,22(1):5-23.
[5] Hartley, R., 1999. Theory and practice of projective rectification.IJCV,35(2):1-16.
[6] Isgro, F., Trucco, E., 1999. Projective rectification without epipolar geometry.IEEE-CVPR,1:94-99.
[7] Kang, S.B., Webb, J., Zitnick, C., Kanade, T., 1994. An Active Multibaseline Stereo System with Real-Time Image Acquisition. Tech. Report CMU-CS-94-167, Carnegie Mellon University.
[8] Kanade, T., 1995. Development of A Video-Rate Stereo Machine. Proc. of International Robotics and Systems Conference (IROS'95),3:95-100.
[9] Kanade, T., Yoshida, A., Oda, K., Kano, H., Tanaka, M., 1996. A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications. Proceedings of IEEE CVPR, p.196-202.
[10] Loop, C., Zhang, Z.Y., 1999. Computing rectifying homographies for stereo vision. Proceedings of IEEE CVPR,1:125-131.
[11] Mulligan, J., Kaniilidis, K., 2000. Trinocular Stereo for Non-parallel Configurations. International Conference on Pattern Recognition (ICPR),1:567-570.
[12] Robert, L., Buffa, M., Hebert, M., 1995. Weakly Calibrated Stereo Perception for Rover Navigation. Proceedings of ICCV-95, p.46-51.
[13] Williamson, T., Thorpe, C., 1998. A Specialized Multibaseline Stereo Technique for Obstacle Detection. Proceedings of IEEE CVPR, p.238-244.
[14] Zhang, Z.Y., Ma, S.D., 2000. Computational Vision. Science Press, China (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>