References
[1] Agrawal, R., Gehrke, J., Gunpopulos, D., 1998. Automatic Subspace Clustering of High DiMensional Data for Data Mining Applications.
, Proc. of ACM SIGMOD Int. Conf. on Management of Data, Seattle, WA, 73-84. :73-84.
[2] Ankerst, M., Breunig, M., Kriegel, H.P., 1999. OPTICS: Ordering Points to Identify the Clustering Structure.
, Proc. 1999 ACM SIGMOD Int. Conf. Management of Data Mining, PA, 49-60. :49-60.
[3] Bechmann, N., Kriegel, H.P., Schneider, R., 1990. The R
*-tree: An Efficient and Robust Access Method for Points and Rectangles.
, Proc. ACM SIGMOD Int. Conf. On Management of Data. Alt. City, NJ, 322-331. :322-331.
[4] Ester, M., Kriegel, H.P., Sander, H., 1996. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
, Proc. of 2nd Int. Conf. on Knowledge Discovering in Databases and Data Mining. Portland, Oregon, 232-1239. :232-1239.
[5] Guha, S., Rastogi, R., Shim, K., 1998. CURE: An Efficient Clustering Algorithm for Large Databases.
, Proc. of the ACM SIGMOD Int. Conf. on Management of Data. Seattle, WA, 73-84. :73-84.
[6] Han, J., 2001.
Data Mining, Morgan Kaufmann Publishers, USA,:242-266.
[7] Halkidi, M., Batistakis, Y., Vazirgiannis, M., 2002. Clustering validity checking methods: part II.
SIGMOD Record, 31(4):51-62.
[8] Karypos, G., Han, E.H., Kunar, V., 1993. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling.
Computer, 32(8):68-75.
[9] Nakamura, E., Kehtarnavaz, N., 1998. Determining number of clusters and prototype locations via multi-scale clustering.
Pattern Recognition Letters, 19(3):1265-1283.
[10] Sheikholeslami, G., Chatterjee, S., Zhang, A., 1998. Wavecluster: A Multi-resolution Clustering Approach for very Large Spatial Databases.
, Proc. of 24th VLDB Conf., New York, 428-439. :428-439.
[11] Yue, S.H., Li, P., Guo, J.D., Zhou, S.G., 2004. Using Greedy algorithm: DBSCAN revisited II.
J Zhejiang Univ SCI, 5(11):1405-1412.
[12] Zhang, W., Yang, Y., Munta, R., 1997. STING: An Statistical Information Grid Approach to Spatial Data Mining.
, Proc. of 23rd VLDB Conf., Seattle, WA, 186-195. :186-195.
Open peer comments: Debate/Discuss/Question/Opinion
<1>