References
[1] Adams, J., Swarztrauber, P., Sweet, R., 1980. FISHPAK: A Package of Fortran Subprograms for the Solution of Separable Elliptic Partial Differential Equations.
, The National Center for Atmospheric Research, Boulder, CO, :
[2] Baaijens, F.P.T., 2001. A fictitious domain/mortar element method for fluid structure interaction.
Int J Numer Meth Fluids, 35:743-761.
[3] Chorin, A.J., Hughes, T.J.R., Marsden, J.E., McCracken, M., 1978. Product formulas and numerical algorithms.
Comm Pure Appl Math, 31:205-256.
[4] Chou, J.C.K., 1992. Quaternion kinematic and dynamic differential equations.
IEEE Transaction on Robotics and Automation, 8:53-64.
[5] Dean, E.J., Glowinski, R., 1997. A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow.
C R Acad Sc Paris, 325(Srie 1):783-791.
[6] Dean, E.J., Glowinski, R., Pan, T.W., 1998. A Wave Equation Approach to the Numerical Simulation of Incompressible Viscous Fluid Flow Modeled by the Navier-Stokes Equations.
De Santo, J.A, (Ed.), Mathematical and Numerical Aspects of Wave Propagation. SIAM, Philadelphia,:65-74.
[7] Diaz-Goano, C., Minev, P.D., Nandakumar, K., 2003. A fictitious domain/finite element method for particulate flows.
J Comp Phy, 192:105-123.
[8] Dong, S., Liu, D., Maxey, M., Karniadakis, G.E., 2004. Spectral distributed multiplier (DLM) method: Algorithm and benchmark test.
J Comp Phys, 195:695-717.
[9] Glowinski, R., 2003. Finite Element Methods for the Numerical Simulation of Unsteady Incompressible Viscous Flow Modeled by the Navier-Stokes Equations.
Handbook of Numerical Analysis, Vol, IX. North-Holland, Amsterdam,:1-1176.
[10] Glowinski, R., Pan, T.W., Hesla, T., 1998. A Fictitious Domain Method with Distributed Lagrange Multipliers for the Numerical Simulation of Particulate Flow.
Domain Decomposition Methods 10, American Mathematical Society, Providence,:121-137.
[11] Glowinski, R., Pan, T.W., Periaux, J., 1998. Distributed Lagrange multiplier methods for incompressible flow around moving rigid bodies.
Comput Methods Appl Mech Engrg, 151:181-194.
[12] Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D., 1999. A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: Application to particulate flows.
Int J Multiphase Flow, 25:755-794.
[13] Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D., Priaux, J., 1999. A distributed Lagrange multiplier/fictitious domain method for flow around moving rigid bodies: Application to particulate flow.
Int J Num Meth in Fluids, 30:1043-1066.
[14] Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D., Priaux, J., 2001. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow.
J Comput Phys, 169:363-426.
[15] Hofler, K., Muller, M., Schwarzer, S., 1998. Interacting Particle-Liquid Systems.
High Performance Computing in Science and Engineering, Springer-Verlag, Berlin,:54-64.
[16] Hu, H.H., 1996. Direct simulation of flows of solid-liquid mixtures.
Int J Multiphase Flow, 22:335-352.
[17] Hu, H.H., Joseph, D.D., Crochet, M.J., 1992. Direct simulation of fluid particle motions.
Theoret Comput Fluid Dynamics, 3:285-306.
[18] Joseph, D.D., 1992. Finite Size Effects in Fluidized Suspension Experiments.
Roco, M.C, (Ed.), Particulate Two-Phase Flow. Butterworth-Heinemann, Boston,:300-324.
[19] Johnson, A., Tezduyar, T., 1997. 3-D simulation of fluid-rigid body interactions with the number of rigid bodies reaching 100.
Comp Meth Appl Mech Eng, 145:301-321.
[20] Jurez, L.H., Glowinski, R., Pan, T.W., 2002. Numerical simulation of the sedimentation of rigid bodies in an incompressible viscous fluid by Lagrange multiplier/fictitious domain methods combined with the Taylor-Hood finite element approximation.
J Scientific Computing, 17:683-694.
[21] Ladd, A.J.C., 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, Part 1, Theoretical foundation.
J Fluid Mech, 271:285-310.
[22] Ladd, A.J.C., 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, Part 2, Numerical results.
J Fluid Mech, 271:311-340.
[23] Liu, Y.J., Joseph, D.D., 1993. Sedimentation of particles in polymer solutions.
J Fluid Mech, 255:565-595.
[24] Marchuk, G.I., 1990. Splitting and Alternating Direction Methods.
Handbook of Numerical Analysis, Vol, I. North-Holland, Amsterdam,:197-462.
[25] Maury, B., Glowinski, R., 1997. Fluid-particle flow: a symmetric formulation.
C R Acad Sc Paris, 324(Srie 1):1079-1084.
[26] Maury, B., 1997. A many-body lubrication model.
C R Acad Sc Paris, 325(Srie 1):1053-1058.
[27] Pan, T.W., Joseph, D.D., Glowinski, R., 2001. Modeling Rayleigh-Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation.
J Fluid Mech, 434:23-37.
[28] Pan, T.W., Joseph, D.D., Bai, R., Glowinski, R., Sarin, V., 2002. Fluidization of 1204 spheres: simulation and experiments.
J Fluid Mech, 451:169-191.
[29] Peskin, C.S., 1977. Numerical analysis of blood flow in the heart.
J Comp Phys, 25:220-252.
[30] Peskin, C.S., 1981. Lectures on mathematical aspects of physiology.
Lectures in Applied Math, 19:69-107.
[31] Peskin, C.S., McQueen, D.M., 1980. Modeling prosthetic heart valves for numerical analysis of blood flow in the heart.
J Comp Phys, 37:113-132.
[32] Qi, D., Luo, L.S., 2003. Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows.
J Fluid Mech, 477:201-213.
[33] Takagi, S., Oguz, H.N., Zhang, Z., Prosperetti, A., 2003. PHYSALIS: A new method for particle simulation. Part II: Two-dimensional Navier-Stokes flow around cylinders.
J Comput Phys, 187:371-390.
[34] Wagner, G.J., Moes, N., Liu, W.K., Belytschko, T., 2001. The extended finite element method for rigid particles in Stokes flow.
Int J Numer Meth Engng, 51:293-313.
[35] Yu, Z., Phan-Thien, N., Fan, Y., Tanner, R.I., 2002. Viscoelastic mobility problem of a system of particles.
J Non-Newtonian Fluid Mech, 104:87-124.
Open peer comments: Debate/Discuss/Question/Opinion
<1>