Full Text:   <2885>

CLC number: TU375

On-line Access: 

Received: 2004-10-07

Revision Accepted: 2004-10-20

Crosschecked: 0000-00-00

Cited: 18

Clicked: 5916

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.2 P.97-109


Simulating the dynamics of fluid-cylinder interactions*

Author(s):  Tsorng-Whay Pan1, Roland Glowinski1, Daniel D. Joseph2

Affiliation(s):  1. Department of Mathematics, University of Houston, Houston, Texas 77204-3008, USA; more

Corresponding email(s):   pan@math.uh.edu

Key Words:  Particulate flow, Finite element methods, Operator-splitting methods, Fictitious domain methods

PAN Tsorng-Whay, GLOWINSKI Roland, JOSEPH Daniel D.. Simulating the dynamics of fluid-cylinder interactions[J]. Journal of Zhejiang University Science A, 2005, 6(2): 97-109.

@article{title="Simulating the dynamics of fluid-cylinder interactions",
author="PAN Tsorng-Whay, GLOWINSKI Roland, JOSEPH Daniel D.",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Simulating the dynamics of fluid-cylinder interactions
%A PAN Tsorng-Whay
%A JOSEPH Daniel D.
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 2
%P 97-109
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0097

T1 - Simulating the dynamics of fluid-cylinder interactions
A1 - PAN Tsorng-Whay
A1 - JOSEPH Daniel D.
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 2
SP - 97
EP - 109
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0097

We present the simulation of the dynamics of fluid-cylinder interactions in a narrow three-dimensional channel filled with a Newtonian fluid, using a Lagrange multiplier based fictitious domain methodology combined with a finite element method and an operator splitting technique. As expected, a settling truncated cylinder turns its broadside perpendicular to the main stream direction and the center of mass moves to the central axis of the channel. In the case of two truncated cylinders, they first move around each other for a while and then stay together in a “T” shape. After the “T” shape has been formed for a long enough time, we found no vortex shedding behind the cylinders. When simulating the fluidization of 60 truncated cylinders, we captured the features of interactions among fluidized cylinders as observed in experiments.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Adams, J., Swarztrauber, P., Sweet, R., 1980. FISHPAK: A Package of Fortran Subprograms for the Solution of Separable Elliptic Partial Differential Equations. , The National Center for Atmospheric Research, Boulder, CO, :

[2] Baaijens, F.P.T., 2001. A fictitious domain/mortar element method for fluid structure interaction. Int J Numer Meth Fluids, 35:743-761. 

[3] Chorin, A.J., Hughes, T.J.R., Marsden, J.E., McCracken, M., 1978. Product formulas and numerical algorithms. Comm Pure Appl Math, 31:205-256. 

[4] Chou, J.C.K., 1992. Quaternion kinematic and dynamic differential equations. IEEE Transaction on Robotics and Automation, 8:53-64. 

[5] Dean, E.J., Glowinski, R., 1997. A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow. C R Acad Sc Paris, 325(Srie 1):783-791. 

[6] Dean, E.J., Glowinski, R., Pan, T.W., 1998. A Wave Equation Approach to the Numerical Simulation of Incompressible Viscous Fluid Flow Modeled by the Navier-Stokes Equations. De Santo, J.A, (Ed.), Mathematical and Numerical Aspects of Wave Propagation. SIAM, Philadelphia,:65-74. 

[7] Diaz-Goano, C., Minev, P.D., Nandakumar, K., 2003. A fictitious domain/finite element method for particulate flows. J Comp Phy, 192:105-123. 

[8] Dong, S., Liu, D., Maxey, M., Karniadakis, G.E., 2004. Spectral distributed multiplier (DLM) method: Algorithm and benchmark test. J Comp Phys, 195:695-717. 

[9] Glowinski, R., 2003. Finite Element Methods for the Numerical Simulation of Unsteady Incompressible Viscous Flow Modeled by the Navier-Stokes Equations. Handbook of Numerical Analysis, Vol, IX. North-Holland, Amsterdam,:1-1176. 

[10] Glowinski, R., Pan, T.W., Hesla, T., 1998. A Fictitious Domain Method with Distributed Lagrange Multipliers for the Numerical Simulation of Particulate Flow. Domain Decomposition Methods 10, American Mathematical Society, Providence,:121-137. 

[11] Glowinski, R., Pan, T.W., Periaux, J., 1998. Distributed Lagrange multiplier methods for incompressible flow around moving rigid bodies. Comput Methods Appl Mech Engrg, 151:181-194. 

[12] Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D., 1999. A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: Application to particulate flows. Int J Multiphase Flow, 25:755-794. 

[13] Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D., Priaux, J., 1999. A distributed Lagrange multiplier/fictitious domain method for flow around moving rigid bodies: Application to particulate flow. Int J Num Meth in Fluids, 30:1043-1066. 

[14] Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D., Priaux, J., 2001. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J Comput Phys, 169:363-426. 

[15] Hofler, K., Muller, M., Schwarzer, S., 1998. Interacting Particle-Liquid Systems. High Performance Computing in Science and Engineering, Springer-Verlag, Berlin,:54-64. 

[16] Hu, H.H., 1996. Direct simulation of flows of solid-liquid mixtures. Int J Multiphase Flow, 22:335-352. 

[17] Hu, H.H., Joseph, D.D., Crochet, M.J., 1992. Direct simulation of fluid particle motions. Theoret Comput Fluid Dynamics, 3:285-306. 

[18] Joseph, D.D., 1992. Finite Size Effects in Fluidized Suspension Experiments. Roco, M.C, (Ed.), Particulate Two-Phase Flow. Butterworth-Heinemann, Boston,:300-324. 

[19] Johnson, A., Tezduyar, T., 1997. 3-D simulation of fluid-rigid body interactions with the number of rigid bodies reaching 100. Comp Meth Appl Mech Eng, 145:301-321. 

[20] Jurez, L.H., Glowinski, R., Pan, T.W., 2002. Numerical simulation of the sedimentation of rigid bodies in an incompressible viscous fluid by Lagrange multiplier/fictitious domain methods combined with the Taylor-Hood finite element approximation. J Scientific Computing, 17:683-694. 

[21] Ladd, A.J.C., 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, Part 1, Theoretical foundation. J Fluid Mech, 271:285-310. 

[22] Ladd, A.J.C., 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, Part 2, Numerical results. J Fluid Mech, 271:311-340. 

[23] Liu, Y.J., Joseph, D.D., 1993. Sedimentation of particles in polymer solutions. J Fluid Mech, 255:565-595. 

[24] Marchuk, G.I., 1990. Splitting and Alternating Direction Methods. Handbook of Numerical Analysis, Vol, I. North-Holland, Amsterdam,:197-462. 

[25] Maury, B., Glowinski, R., 1997. Fluid-particle flow: a symmetric formulation. C R Acad Sc Paris, 324(Srie 1):1079-1084. 

[26] Maury, B., 1997. A many-body lubrication model. C R Acad Sc Paris, 325(Srie 1):1053-1058. 

[27] Pan, T.W., Joseph, D.D., Glowinski, R., 2001. Modeling Rayleigh-Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation. J Fluid Mech, 434:23-37. 

[28] Pan, T.W., Joseph, D.D., Bai, R., Glowinski, R., Sarin, V., 2002. Fluidization of 1204 spheres: simulation and experiments. J Fluid Mech, 451:169-191. 

[29] Peskin, C.S., 1977. Numerical analysis of blood flow in the heart. J Comp Phys, 25:220-252. 

[30] Peskin, C.S., 1981. Lectures on mathematical aspects of physiology. Lectures in Applied Math, 19:69-107. 

[31] Peskin, C.S., McQueen, D.M., 1980. Modeling prosthetic heart valves for numerical analysis of blood flow in the heart. J Comp Phys, 37:113-132. 

[32] Qi, D., Luo, L.S., 2003. Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows. J Fluid Mech, 477:201-213. 

[33] Takagi, S., Oguz, H.N., Zhang, Z., Prosperetti, A., 2003. PHYSALIS: A new method for particle simulation. Part II: Two-dimensional Navier-Stokes flow around cylinders. J Comput Phys, 187:371-390. 

[34] Wagner, G.J., Moes, N., Liu, W.K., Belytschko, T., 2001. The extended finite element method for rigid particles in Stokes flow. Int J Numer Meth Engng, 51:293-313. 

[35] Yu, Z., Phan-Thien, N., Fan, Y., Tanner, R.I., 2002. Viscoelastic mobility problem of a system of particles. J Non-Newtonian Fluid Mech, 104:87-124. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE