CLC number: TK16
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 6375
LIU Lan, JI Feng, FAN Jian-ren, CEN Ke-fa. Recent development of vortex method in incompressible viscous bluff body flows[J]. Journal of Zhejiang University Science A, 2005, 6(4): 283-288.
@article{title="Recent development of vortex method in incompressible viscous bluff body flows",
author="LIU Lan, JI Feng, FAN Jian-ren, CEN Ke-fa",
journal="Journal of Zhejiang University Science A",
volume="6",
number="4",
pages="283-288",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0283"
}
%0 Journal Article
%T Recent development of vortex method in incompressible viscous bluff body flows
%A LIU Lan
%A JI Feng
%A FAN Jian-ren
%A CEN Ke-fa
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 4
%P 283-288
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0283
TY - JOUR
T1 - Recent development of vortex method in incompressible viscous bluff body flows
A1 - LIU Lan
A1 - JI Feng
A1 - FAN Jian-ren
A1 - CEN Ke-fa
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 4
SP - 283
EP - 288
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0283
Abstract: vortex methods have been alternative tools of finite element and finite difference methods for several decades. This paper presents a brief review of vortex method development in the last decades and introduces efficient vortex methods developed for high Reynolds number bluff body flows and suitable for running on parallel computer architectures. Included in this study are particle strength exchange methods, core-spreading method, deterministic particle method and hybrid vortex methods. Combined with conservative methods, vortex methods can comprise the most available tools for simulations of three-dimensional complex bluff body flows at high Reynolds numbers.
[1] Akbari, M.H., Price, S.J., 2000. Simulation of the flow over elliptic airfoils oscillating at large angles of attack. Journal of Fluids and Structures, 14:757-777.
[2] Akbari, M.H., Price, S.J., 2003. Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method. Journal of Fluids and Structures, 17:855-874.
[3] Beale, J.T., Majda, A., 1981. Rates of convergence for viscous splitting of the Navier-Stokes equations. Math Comput, 37:243-259.
[4] Beale, J.T., Majada, A., 1982. Vortex methods I: Convergence in three dimensions. Math Comput, 39:1-27.
[5] Bernard, P.S., 1995. A deterministic vortex sheet method for boundary layer flow. J Comput Phys, 117:132-145.
[6] Chang, C.C., Chen, R.L., 1991. A numerical study of flow around an impulsively started circular cylinder by a deterministic vortex method. J Fluid Mech, 233:243-263.
[7] Chen, B., Guo, L.J., Yang, X.G., 2002. Numerical simulation of flow around circular cylinder by discrete vortex method. Progress in Natural Science, 12:964-969.
[8] Cheng, M., Liu, G.R., Lam, K.Y., 2001a. Numerical simulation of flow past a rotationally oscillating cylinder. Computers & Fluids, 30:365-392.
[9] Cheng, M., Chew, Y.H., Luo, S.C., 2001b. Numerical investigation of a rotationally oscillating cylinder in mean flow. Journal of Fluids and Structures, 15:981-1007.
[10] Chorin, A.J., 1978. On the convergence of discrete approximations to the Navier-Stokes equations. SIAM J Sci Stat Comput, 27:341-353.
[11] Clarke, N.R., Tutty, O.R., 1994. Construction and validation of a discrete vortex method for two-dimensional incompressible Navier-Stokes equations. Computers & Fluids, 23:751-783.
[12] Cottet, G.H., Koumoutsakos, P., 2000. Vortex Methods: Theory and Practice. Cambridge Univ. Press, Cambridge, UK.
[13] Cottet, G.H., Koumoutsakos, P., Ould-Salihi, M.L., 2000. Vortex methods with spatially varying cores. J Comput. Phys, 162:164-185.
[14] Degond, P., Mas-Gallic, S., 1989. The weighted particle method for convection diffusion equations Part 1: The case of an isotropic viscosity. Math Comput, 53:485-507.
[15] Fishelov, D., 1990. A new vortex scheme for viscous flows. J Comput Phys, 86:211-224.
[16] Fusen, H., Su, T.C., 1998. A numerical study of bluff body aerodynamics in high Reynolds number flows by viscous vortex element method. Journal of Wind Engineering and Industrial Aerodynamics, 77&78:393-407.
[17] Greengard, L., Rokhlin, V., 1987. A fast algorithm for particle simulations. J Comput Phys, 73:325-348.
[18] Koumoutsakos, P., Leonard, A., 1995. High-resolution simulation of the flow around an impulsively started cylinder using vortex methods. J Fluid Mech, 296:1-38.
[19] Koumoutsakos, P., Shiels, D., 1996. Simulations of the viscous flow normal to an impulsively started and uniformly accelerated at plate. J Fluid Mech, 328:177-227.
[20] Leonard, A., 1980. Vortex methods for flow simulation. J. Comput. Phys, 37:289-335.
[21] Mortazavi, I., Giovannini, A., 2001. The simulation of vortex dynamics downstream of a plate separator using a vortex-finite element method. International Journal of Fluid Dynamics, 5:41-58.
[22] Nordmark, H.O., 1996. Deterministic high order vortex methods for the 2D Navier-Stokes equation with rezoning. J Comput Phys, 129:41-56.
[23] Ogami, Y., Akamatsu, T., 1991. Viscous flow simulation using the discrete vortex model the diffusion velocity method. Computers & Fluids, 19:433-441.
[24] Ould-Salihi, M.L., Cottet, G.H., El Hamraoui, M., 2000. Blending finite-difference and methods for incompressible flow computations. SIAM J Sci Comput, 22:1655-1674.
[25] Ploumhans, P., Winckelmans, G.S., 2000. Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. J Comput Phys, 165:354-406.
[26] Ploumhans, P., Winckelmans, G.S., Salmon, J.K., Leonard, A., Warren, M.S., 2002. Vortex methods for direct numerical simulation of three-dimensional bluff body flows: application to the sphere at Re=300, 500, and 1000. J Comput Phys, 178:427-463.
[27] Rossi, L.F., 1996. Resurrecting core spreading methods: a new scheme that is both deterministic and convergent. SIAM J Sci Com, 17:370-397.
[28] Rouvreau, S., 2001. Two-dimensional viscous vortex flow around a circular cylinder. Aerosp Sci Technol, 5:85-94.
[29] Shankar, S., van Dommelen, L., 1996. A new diffusion procedure for vortex methods. J Comput Phys, 127:88-109.
[30] Uchiyama, T., Okita, T., 2003. Numerical prediction of a plume diffusion field around a circular cylinder by the particle method. Advances in Environmental Research, 7:573-581.
[31] Walther, J.H., 2003. An influence matrix particle-particle-particle-mesh algorithm with exact particle-particle correction. J Comput Phys, 184:670-678.
[32] Walther, J.H., Morgenthal, G., 2002. An immersed interface method for the vortex-in-cell algorithm. Journal of Turbulence, 3:1-9.
[33] Zhu, B.S., Kyoji, K., 2003. A Lagrangian vortex method for flows over a moving bluff body. Computational Fluid Dynamics J, 11:363-370.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Masahiro Isobe<1beu2212@mail.tokai-u.jp>
2014-11-28 22:31:55
I want to study core-spreading meethod.
WU Long@buaa<554995730@qq.com>
2014-04-04 10:44:20
vortex method is a powerful tool in fluid simulation
Tarun@University of Rostock<tarun.sheel@uni-rostock.de>
2010-10-19 18:22:03
Its a very good journal