CLC number: O441
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 12
Clicked: 6397
Geng You-lin, He Sailing. Analytical solution for electromagnetic scattering from a sphere of uniaxial left-handed material[J]. Journal of Zhejiang University Science A, 2006, 7(1): 99-104.
@article{title="Analytical solution for electromagnetic scattering from a sphere of uniaxial left-handed material",
author="Geng You-lin, He Sailing",
journal="Journal of Zhejiang University Science A",
volume="7",
number="1",
pages="99-104",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0099"
}
%0 Journal Article
%T Analytical solution for electromagnetic scattering from a sphere of uniaxial left-handed material
%A Geng You-lin
%A He Sailing
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 1
%P 99-104
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0099
TY - JOUR
T1 - Analytical solution for electromagnetic scattering from a sphere of uniaxial left-handed material
A1 - Geng You-lin
A1 - He Sailing
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 1
SP - 99
EP - 104
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0099
Abstract: Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain, an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering of a uniaxial anisotropic sphere by a plane wave are given.
[1] Cui, T.J., Hao, Z.C., Yin, X.X., Hong, W., Kong, J.A., 2004. Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials. Phys. Lett. A, 323:484-494.
[2] Geng, Y.L., Wu, X.B., Li, L.W., Guan, B.R., 2004. Mie scattering by a uniaxial anisotropic sphere. Phys. Rev. E, 70:056609/1-8.
[3] Lindell, I.V., Tretyakov, S.A., Nikoskinen, K.I., Ilvonen, S., 2001. BW media-media with negative parameters, capable of supporting backward waves. Microwave and Optical Technology Letters, 31(2):129-133.
[4] Medgyesi-Mitschang, L.N., Putnam, J.M., Gedera, M.B., 1994. Generalized method of moments for three-dimensional penetrable scatterers. J. Opt. Soc. Am. A, 11:1383-1398.
[5] Monzon, C., Forester, D.W., Medgyesi-Mitschang, L.N., 2004. Scattering properties of an impedance-matched, ideal, homogeneous, causal “left-handed” sphere. J. Opt. Soc. Am. A, 21(12):2311-2319.
[6] Pendry, J.B., 2000. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85(18):3966-3969.
[7] Ren, W., 1993. Contribution to the electromagnetic wave theoy of bounded homogeneous anisotropic media. Phys. Rev. E, 47:664-673.
[8] Sarkar, D., Halas, N.J., 1997. General vector basis function solution of Maxwell’s equations. Phys. Rev. E, 56:1102-112.
[9] Shelby, R.A., Smith, D.R., Schutz, S., 2001a. Experimental verification of a negative index of refraction. Science, 292:77-79.
[10] Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S., 2001b. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett., 78:489-491.
[11] Smith, D.R., Kroll, N., 2000. Negative refraction index in left-handed materials. Phys. Rev. Lett., 85:2933-2936.
[12] Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., 2000. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 84:4184-4187.
[13] Stratton, J.A., 1941. Electromagnetic Theory. McGraw-Hill, New York.
[14] Veselago, V.G., 1968. The electrodynamics of substances with simultaneously negative values of ε and µ. Soviet Physics Uspekhi, 10(4):509-514.
[15] Wu, Z.S., Wang, Y.P., 1991. Electromagnetic scattering for multilayered sphere: Recursive algorithms. Radio Science, 26(6):1393-1401.
[16] Ziolkowski, R.W., Engheta N., 2003. Special issue on metamaterials. IEEE Trans. AP, 51(10).
Open peer comments: Debate/Discuss/Question/Opinion
<1>