Full Text:   <3196>

CLC number: TP273

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 4

Clicked: 7006

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.10 P.1723-1732

http://doi.org/10.1631/jzus.2006.A1723


Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model


Author(s):  SU Cheng-li, WANG Shu-qing

Affiliation(s):  National Laboratory of Industrial Control Technology, Institute of Advanced Process Control, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   sclwind@sina.com

Key Words:  Uncertain Takagi-Sugeno fuzzy model, Time-delay, Model predictive control (MPC), Linear matrix inequalities (LMIs), Robustness


SU Cheng-li, WANG Shu-qing. Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model[J]. Journal of Zhejiang University Science A, 2006, 7(10): 1723-1732.

@article{title="Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model",
author="SU Cheng-li, WANG Shu-qing",
journal="Journal of Zhejiang University Science A",
volume="7",
number="10",
pages="1723-1732",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1723"
}

%0 Journal Article
%T Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model
%A SU Cheng-li
%A WANG Shu-qing
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 10
%P 1723-1732
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1723

TY - JOUR
T1 - Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model
A1 - SU Cheng-li
A1 - WANG Shu-qing
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 10
SP - 1723
EP - 1732
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1723


Abstract: 
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem involving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in System and Control Theory. SIAM. Philadelphia.

[2] Cao, Y.Y., Frank, P.M., 2000. Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems, 8(2):200-211.

[3] Casavola, A., Famularo, D., Franze, G., 2004. Robust constrained predictive control of uncertain norm-bounded linear systems. Automatica, 40(11):1865-1876.

[4] Hu, X.B., Chen, W.H., 2004. Model predictive control for constrained systems with uncertain state-delays. International Journal of Robust and Nonlinear Control, 14(17):1421-1432.

[5] Kothare, M.V., Balakrishnan, V., Morari, M., 1996. Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10):1361-1379.

[6] Li, P., Wendt, M., Wozny, G., 2000. Robust model predictive control under chance constraints. Computers and Chemical Engineering, 24:829-834.

[7] Matko, D., Kavsek-Biasizzo, K., Skrjanc, I., Music, G., 2000. Generalized Predictive Control of a Thermal Plant Using Fuzzy Model. American Control Conference. Chicago, Illinois, 3:2053-2057.

[8] Mollov, S., Babuska, R., Abonyi, J., Verbruggen, H.B., 2004. Effective optimization for fuzzy model predictive control. IEEE Transactions on Fuzzy Systems, 12(5):661-675.

[9] Nounou, H.N., Passino, K.M., 1999. Fuzzy Model Predictive Control: Techniques, Stability Issues, and Examples. Proceedings of the IEEE International Symposium on Intelligent Control. Cambridge, MA, p.423-428.

[10] Oblak, S., Skrjanc, I., 2005. Multivariable Fuzzy Predictive Functional Control of a Mimo Nonlinear System. Proceedings of the IEEE International Symposium on Intelligent Control. Limassol, Cyprus, p.1029-1034.

[11] Sarimveis, H., Bafas, G., 2003. Fuzzy model predictive control of non-linear processes using genetic algorithms. Fuzzy Sets and Systems, 139(1):59-80.

[12] Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15:116-132.

[13] Wang, R.J., Lin, W.W., Wang, W.J., 2004. Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(2):1288-1292.

[14] Yan, F., Hu, P.H., 2004. State Feedback Model Predictive Control to Complex Systems with Multi-time Delays. Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou, China, p.946-950.

[15] Zheng, F., Wang, Q.G., Lee, T.H., 2005. Adaptive robust control of uncertain time delay systems. Automatica, 41(8):1375-1383.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE