Full Text:   <2680>

CLC number: O343.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 5243

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.12 P.2018-2021

http://doi.org/10.1631/jzus.2006.A2018


An effective quadrilateral mesh adaptation


Author(s):  KHATTRI Sanjay Kumar

Affiliation(s):  Stord/Haugesund University College, Bjø more

Corresponding email(s):   sanjay@mi.uib.no

Key Words:  Quadrilateral mesh, Area functional, Adaptive function, Jacobian, Partial differential equations


KHATTRI Sanjay Kumar. An effective quadrilateral mesh adaptation[J]. Journal of Zhejiang University Science A, 2006, 7(12): 2018-2021.

@article{title="An effective quadrilateral mesh adaptation",
author="KHATTRI Sanjay Kumar",
journal="Journal of Zhejiang University Science A",
volume="7",
number="12",
pages="2018-2021",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A2018"
}

%0 Journal Article
%T An effective quadrilateral mesh adaptation
%A KHATTRI Sanjay Kumar
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 12
%P 2018-2021
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A2018

TY - JOUR
T1 - An effective quadrilateral mesh adaptation
A1 - KHATTRI Sanjay Kumar
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 12
SP - 2018
EP - 2021
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A2018


Abstract: 
Accuracy of a simulation strongly depends on the grid quality. Here, quality means orthogonality at the boundaries and quasi-orthogonality within the critical regions, smoothness, bounded aspect ratios and solution adaptive behaviour. It is not recommended to refine the parts of the domain where the solution shows little variation. It is desired to concentrate grid points and cells in the part of the domain where the solution shows strong gradients or variations. We present a simple, effective and computationally efficient approach for quadrilateral mesh adaptation. Several numerical examples are presented for supporting our claim.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Aavatsmark, I., Barkve, T., Bøe, O., Mannseth, T., 1998. Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results. SIAM J. Sci. Comput., 19(5):1717-1736 (electronic).

[2] Cao, W., Huang, W., Russell, R.D., 1999. A study of monitor functions for two-dimensional adaptive mesh generation. SIAM J. Sci. Comput., 20(6):1978-1994 (electronic).

[3] Cao, W., Carretero-González, R., Huang, W., Russell, R.D., 2003. Variational mesh adaptation methods for axisymmetrical problems. SIAM J. Numer. Anal., 41(1):235-257 (electronic).

[4] Castillo, J.E., 1991. A discrete variational grid generation method. SIAM J. Sci. Comput., 12(2):454-468.

[5] Castillo, J.E., Steinberg, S., Roache, P.J., 1987. Mathematical Aspects of Variational Grid Generation. II. Proceedings of the 2nd International Conference on Computational and Applied Mathematics (Leuven, 1986), 20:127-135.

[6] Huang, W., 2001. Variational mesh adaptation: isotropy and equidistribution. J. Comput. Phys., 174(2):903-924.

[7] Khattri, S.K., 2006a. Newton-Krylov algorithm with adaptive error correction for the Poisson-Boltzmann equation. MATCH Commun. Math. Comput. Chem., 1:197-208.

[8] Khattri, S.K., 2006b. Analyzing an adaptive finite volume for flow through highly heterogenous porous medium. Journal of Transport in Porous Media (Submitted).

[9] Khattri, S.K., 2006c. Computationally efficient technique for nonlinear Poisson Boltzmann equation. Lecture Notes in Computer Science, 3991:860-863.

[10] Khattri, S.K., 2006d. Adaptive Quadrilateral Mesh in Curved Domains (Submitted). Available at http://www.mi.uib.no/~sanjay/RESEARCH_/ELLIPTIC_GRID_/Documentation_/Main_MS.pdf.

[11] Khattri, S.K., 2007. Analyzing finite volume for single phase flow in porous media. Journal of Porous Media, 10(2) (in Press).

[12] Khattri, S.K., Fladmark, G., 2006. Which meshes are better conditioned: adaptive, uniform, locally refined or locally adjusted? Lecture Notes in Computer Science, 3992:102-105.

[13] Thompson, J.F., Soni, B.K., Weatheril, N.P., 1998. Handbook of Grid Generation. CRC Press.

[14] Tinoco-Ruiz, J.G., Barrera-Sánchez, P., Cortés-Medina, A., 2001. Some Properties of Area Functionals in Numerical Grid Generation. Proceedings of the 10th Meshing Roundtable, Newport Beach, California, USA, p.43-54.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE