Full Text:   <3306>

CLC number: Q819

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 22

Clicked: 6523

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2006 Vol.7 No.10 P.817-824

http://doi.org/10.1631/jzus.2006.B0817


Osteogenic potential of human periosteum-derived progenitor cells in PLGA scaffold using allogeneic serum


Author(s):  ZHENG Yi-xiong, RINGE Jochen, LIANG Zhong, LOCH Alexander, CHEN Li, SITTINGER Michael

Affiliation(s):  Department of Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; more

Corresponding email(s):   zyx_xxn@hotmail.com

Key Words:  Tissue engineering, Poly-lactic-co-glycolic acid polymer, Periosteum-derived progenitor cells, 3-dimensional culture


ZHENG Yi-xiong, RINGE Jochen, LIANG Zhong, LOCH Alexander, CHEN Li, SITTINGER Michael. Osteogenic potential of human periosteum-derived progenitor cells in PLGA scaffold using allogeneic serum[J]. Journal of Zhejiang University Science B, 2006, 7(10): 817-824.

@article{title="Osteogenic potential of human periosteum-derived progenitor cells in PLGA scaffold using allogeneic serum",
author="ZHENG Yi-xiong, RINGE Jochen, LIANG Zhong, LOCH Alexander, CHEN Li, SITTINGER Michael",
journal="Journal of Zhejiang University Science B",
volume="7",
number="10",
pages="817-824",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.B0817"
}

%0 Journal Article
%T Osteogenic potential of human periosteum-derived progenitor cells in PLGA scaffold using allogeneic serum
%A ZHENG Yi-xiong
%A RINGE Jochen
%A LIANG Zhong
%A LOCH Alexander
%A CHEN Li
%A SITTINGER Michael
%J Journal of Zhejiang University SCIENCE B
%V 7
%N 10
%P 817-824
%@ 1673-1581
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.B0817

TY - JOUR
T1 - Osteogenic potential of human periosteum-derived progenitor cells in PLGA scaffold using allogeneic serum
A1 - ZHENG Yi-xiong
A1 - RINGE Jochen
A1 - LIANG Zhong
A1 - LOCH Alexander
A1 - CHEN Li
A1 - SITTINGER Michael
J0 - Journal of Zhejiang University Science B
VL - 7
IS - 10
SP - 817
EP - 824
%@ 1673-1581
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.B0817


Abstract: 
The use of periosteum-derived progenitor cells (PCs) combined with bioresorbable materials is an attractive approach for tissue engineering. The aim of this study was to characterize the osteogenic differentiation of PC in 3-dimensional (3D) poly-lactic-co-glycolic acid (PLGA) fleeces cultured in medium containing allogeneic human serum. PCs were isolated and expanded in monolayer culture. Expanded cells of passage 3 were seeded into PLGA constructs and cultured in osteogenic medium for a maximum period of 28 d. Morphological, histological and cell viability analyses of three-dimensionally cultured PCs were performed to elucidate osseous synthesis and deposition of a calcified matrix. Furthermore, the mRNA expression of type I collagen, osteocalcin and osteonectin was semi-quantitively evaluated by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The fibrin gel immobilization technique provided homogeneous PCs distribution in 3D PLGA constructs. Live-dead staining indicated a high viability rate of PCs inside the PLGA scaffolds. Secreted nodules of neo-bone tissue formation and the presence of matrix mineralization were confirmed by positive von Kossa staining. The osteogenic differentiation of PCs was further demonstrated by the detection of type I collagen, osteocalcin and osteonectin gene expression. The results of this study support the concept that this tissue engineering method presents a promising method for creation of new bone in vivo.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Arnold, U., Lindenhayn, K., Perka, C., 2002. In vitro-cultivation of human periosteum derived cells in bioresorbable polymer-TCP-composites. Biomaterials, 23(11):2303-2310.

[2] Barry, F.P., Murphy, J.M., 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol., 36(4):568-584.

[3] Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., Peterson, L., 1994. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med., 331(14):889-895.

[4] Chen, G., Sato, T., Ohgushi, H., Ushida, T., Tateishi, T., Tanaka, J., 2005. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials, 26(15):2559-2566.

[5] Chenu, C., Colucci, S., Grano, M., Zigrino, P., Barattolo, R., Zambonin, G., Baldini, N., Vergnaud, P., Delmas, P.D., Zallone, A.Z., 1994. Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J. Cell Biol., 127(4):1149-1158.

[6] de Bari, C., Dell’Accio, F., Tylzanowski, P., Luyten, F.P., 2001. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum., 44(8):1928-1942.

[7] Derubeis, A.R., Cancedda, R., 2004. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Annals of Biomedical Engineering, 32(1):160-165.

[8] Gröger, A., Klaring, S., Merten, H.A., Holste, J., Kaps, C., Sittinger, M., 2003. Tissue engineering of bone for mandibular augmentation in immunocompetent minipigs: preliminary study. Scand. J. Plast. Reconstr. Surg. Hand Surg., 37(3):129-133.

[9] Ignatius, A., Blessing, H., Liedert, A., Schmidt, C., Neidlinger-Wilke, C., Kaspar, D., Friemert, B., Claes, L., 2005. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials, 26(3):311-318.

[10] Karp, J.M., Sarraf, F., Shoichet, M.S., Davies, J.E., 2004. Fibrin-filled scaffolds for bone-tissue engineering: an in vivo study. J. Biomed. Mater. Res. A, 71(1):162-171.

[11] Lennon, P.F., Collard, C.D., Morrissey, M.A., Stahl, G.L., 1996. Complement-induced endothelial dysfunction in rabbits: mechanisms, recovery, and gender differences. Am. J. Physiol., 270(6 Pt 2):H1924-H1932.

[12] Muschler, G.F., Midura, R.J., 2002. Connective tissue progenitors: practical concepts for clinical applications. Clin. Orthop. Relat. Res., 395:66-80.

[13] Nöth, U., Osyczka, A.M., Tuli, R., Hickok, N.J., Danielson, K.G., Tuan, R.S., 2002. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J. Orthop. Res., 20(5):1060-1069.

[14] Ouyang, H.W., Goh, J.C., Mo, X.M., Teoh, S.H., Lee, E.H., 2002. The efficacy of bone marrow stromal cell-seeded knitted PLGA fiber scaffold for Achilles tendon repair. Ann. N. Y. Acad. Sci., 961(1):126-129.

[15] Peng, H., Huard, J., 2004. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl. Immunol., 12(3-4):311-319.

[16] Perka, C., Schultz, O., Spitzer, R.S., Lindenhayn, K., Burmester, G.R., Sittinger, M., 2000. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials, 21(11):1145-1153.

[17] Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., Marshak, D.R., 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411):143-147.

[18] Redlich, A., Perka, C., Schultz, O., Spitzer, R., Häupl, T., Burmester, G.R., Sittinger, M., 1999. Bone engineering on the basis of periosteal cells cultured in polymer fleeces. J. Mater. Sci. Mater. Med., 10(12):767-772.

[19] Ringe, J., Kaps, C., Burmester, G.R., Sittinger, M., 2002. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften, 89(8):338-351.

[20] Ringe, J., Zheng, Y.X., Neumann, K., 2005. Surface marker expression, multilinage potential and chemotaxis of human mesenchymal stem cell and periosteal cells. The International Journal of Artificial Organ, 28(4):336.

[21] Schmelzeisen, R., Schimming, R., Sittinger, M., 2003. Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation―a preliminary report. J. Craniomaxillofac. Surg., 31(1):34-39.

[22] Sittinger, M., Reitzel, D., Dauner, M., Hierlemann, H., Hammer, C., Kastenbauer, E., Planck, H., Burmester, G.R., Bujia, J., 1996. Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J. Biomed. Mater. Res., 33(2):57-63.

[23] Sittinger, M., Hutmacher, D.M., Risbud, M.V., 2004. Current strategies for cell delivery in cartilage and bone regeneration. Curr. Opin. Biotechnol., 15(5):411-418.

[24] Sommer, B., Bickel, M., Hofstetter, W., Wetterwald, A., 1996. Expression of matrix proteins during the development of mineralized tissues. Bone, 19(4):371-380.

[25] Zuk, P.A., Zhu, M., Ashjian, P., de Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., Hedrick, M.H., 2002. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell, 13(12):4279-4295.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE