CLC number: R54
On-line Access:
Received: 2008-09-15
Revision Accepted: 2009-01-09
Crosschecked: 2009-04-07
Cited: 2
Clicked: 6091
Zhi-qiang YING, Dan-dan ZHONG, Geng XU, Miao-yan CHEN, Qing-yu CHEN. Adiponectin levels are associated with the number and activity of circulating endothelial progenitor cells in patients with coronary artery disease[J]. Journal of Zhejiang University Science B, 2009, 10(5): 368-374.
@article{title="Adiponectin levels are associated with the number and activity of circulating endothelial progenitor cells in patients with coronary artery disease",
author="Zhi-qiang YING, Dan-dan ZHONG, Geng XU, Miao-yan CHEN, Qing-yu CHEN",
journal="Journal of Zhejiang University Science B",
volume="10",
number="5",
pages="368-374",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820285"
}
%0 Journal Article
%T Adiponectin levels are associated with the number and activity of circulating endothelial progenitor cells in patients with coronary artery disease
%A Zhi-qiang YING
%A Dan-dan ZHONG
%A Geng XU
%A Miao-yan CHEN
%A Qing-yu CHEN
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 5
%P 368-374
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820285
TY - JOUR
T1 - Adiponectin levels are associated with the number and activity of circulating endothelial progenitor cells in patients with coronary artery disease
A1 - Zhi-qiang YING
A1 - Dan-dan ZHONG
A1 - Geng XU
A1 - Miao-yan CHEN
A1 - Qing-yu CHEN
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 5
SP - 368
EP - 374
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820285
Abstract: Objective: To study the relationship between plasma adiponectin concentration and the functional activities of circulating endothelial progenitor cells (EPCs) in patients with coronary artery disease (CAD). Methods: Circulating EPCs were enumerated as AC133+/KDR+ cells via flow cytometry and identified by co-staining with DiI-acLDL and fluorescein isothiocyanate (FITC)-conjugated lectin under a fluorescent microscope. The migratory capacity of EPCs was measured by modified Boyden chamber assay. Adhesion capacity was performed to count adherent cells after replating EPCs on six-well culture dishes coated with fibronectin. Results: The number of circulating EPCs (AC133+/KDR+ cells) decreased significantly in CAD patients, compared with control subjects [(74.2±12.3) vs (83.5±12.9) cells/ml blood, P<0.01]. In addition, the number of EPCs also decreased in CAD patients after ex vivo cultivation [(54.4±8.6) vs (71.9±11.6) EPCs/field, P<0.01]. Both circulating EPCs and differentiated EPCs were positively correlated with plasma adiponectin concentration. The functional activities of EPCs from CAD patients, such as migratory and adherent capacities, were also impaired, compared with control subjects, and positively correlated with plasma adiponectin concentration. Conclusion: The study demonstrates that the impairment of the number and functional activities of EPCs in CAD patients is correlated with their lower plasma adiponectin concentrations.
[1] Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J., Hotta, K., Shimomura, I., Nakamura, T., Miyaoka, K., et al., 1999. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun., 257(1):79-83.
[2] Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., Isner, J.M., 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302):964-966.
[3] Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., Kearne, M., Magner, M., Isner, J.M., 1999. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res., 85(3): 221-228.
[4] Chen, H., Montagnani, M., Funahashi, T., Shimomura, I., Quon, M.J., 2003. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem., 278(45):45021-45026.
[5] Chen, T.G., Chen, J.Z., Wang, X.X., 2006. Effects of rapamycin on number activity and eNOS of endothelial progenitor cells from peripheral blood. Cell Prolif., 39(2): 117-125.
[6] Davignon, J., Ganz, P., 2004. Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23 Suppl. 1):III27-III32.
[7] Fujii, H., Li, S.H., Szmitko, P.E., Fedak, P.W., Verma, S., 2006. C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol., 26(11):2476-2482.
[8] Funahashi, T., Nakamura, T., Shimomura, I., Maeda, K., Kuriyama, H., Takahashi, M., Arita, Y., Kihara, S., Matsuzawa, Y., 1999. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern. Med., 38(2):202-206.
[9] Gill, M., Dias, S., Hattori, K., Rivera, M.L., Hicklin, D., Witte, L., Girardi, L., Yurt, R., Himel, H., Rafii, S., 2001. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ. Res., 88(2):167-174.
[10] Higashiura, K., Ura, N., Ohata, J., Togashi, N., Takagi, S., Saitoh, S., Murakami, H., Takagawa, Y., Shimamoto, K., 2004. Correlations of adiponectin level with insulin resistance and atherosclerosis in Japanese male populations. Clin. Endocrinol. (Oxf.), 61(6):753-759.
[11] Hill, J.M., Zalos, G., Halcox, J.P., Schenke, W.H., Waclawiw, M.A., Quyyumi, A.A., Finkel, T., 2003. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med., 348(7):593-600.
[12] Hotta, K., Funahashi, T., Arita, Y., Takahashi, M., Matsuda, M., Okamoto, Y., Iwahashi, H., Kuriyama, H., Ouchi, N., Maeda, K., et al., 2000. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol., 20(6): 1595-1599.
[13] Iwashima, Y., Horio, T., Kumada, M., Suzuki, Y., Kihara, S., Rakugi, H., Kawano, Y., Funahashi, T., Ogihara, T., 2006a. Adiponectin and renal function, and implication as a risk of cardiovascular disease. Am. J. Cardiol., 98(12): 1603-1608.
[14] Iwashima, Y., Horio, T., Suzuki, Y., Kihara, S., Rakugi, H., Kangawa, K., Funahashi, T., Ogihara, T., Kawano, Y., 2006b. Adiponectin and inflammatory markers in peripheral arterial occlusive disease. Atherosclerosis, 188(2): 384-390.
[15] Kojima, S., Funahashi, T., Sakamoto, T., Miyamoto, S., Soejima, H., Hokamaki, J., Kajiwara, I., Sugiyama, S., Yoshimura, M., Fujimoto, K., et al., 2003. The variation of plasma concentrations of a novel, adipocyte derived protein, adiponectin, in patients with acute myocardial infarction. Heart, 89(6):667.
[16] Motoshima, H., Wu, X., Mahadev, K., Goldstein, B.J., 2004. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem. Biophys. Res. Commun., 315(2):264-271.
[17] Okamoto, Y., Kihara, S., Ouchi, N., Nishida, M., Arita, Y., Kumada, M., Ohashi, K., Sakai, N., Shimomura, I., Kobayashi, H., et al., 2002. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation, 106(22):2767-2770.
[18] Okui, H., Hamasaki, S., Ishida, S., Kataoka, T., Orihara, K., Fukudome, T., Ogawa, M., Oketani, N., Saihara, K., Shinsato, T., et al., 2008. Adiponectin is a better predictor of endothelial function of the coronary artery than HOMA-R, body mass index, immunoreactive insulin, or triglycerides. Int. J. Cardiol., 126(1):53-61.
[19] Otake, H., Shite, J., Shinke, T., Watanabe, S., Tanino, Y., Ogasawara, D., Sawada, T., Hirata, K., Yokoyama, M., 2008. Relation between plasma adiponectin, high-sensitivity C-reactive protein, and coronary plaque components in patients with acute coronary syndrome. Am. J. Cardiol., 101(1):1-7.
[20] Ouchi, N., Kihara, S., Arita, Y., Maeda, K., Kuriyama, H., Okamoto, Y., Hotta, K., Nishida, M., Takahashi, M., Nakamura, T., et al., 1999. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation, 100(25):2473-2476.
[21] Ouchi, N., Kihara, S., Arita, Y., Nishida, M., Matsuyama, A., Okamoto, Y., Ishigami, M., Kuriyama, H., Kishida, K., Nishizawa, H., et al., 2001. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation, 103(8):1057-1063.
[22] Ouchi, N., Ohishi, M., Kihara, S., Funahashi, T., Nakamura, T., Nagaretani, H., Kumada, M., Ohashi, K., Okamoto, Y., Nishizawa, H., et al., 2003a. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension, 42(3):231-234.
[23] Ouchi, N., Kihara, S., Funahashi, T., Nakamura, T., Nishida, M., Kumada, M., Okamoto, Y., Ohashi, K., Nagaretani, H., Kishida, K., et al., 2003b. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation, 107(5):671-674.
[24] Peichev, M., Naiyer, A.J., Pereira, D., Zhu, Z., Lane, W.J., Williams, M., Oz, M.C., Hicklin, D.J., Witte, L., Moore, M.A., et al., 2000. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95(3): 952-958.
[25] Satoh, M., Ishikawa, Y., Takahashi, Y., Itoh, T., Minami, Y., Nakamura, M., 2008. Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis, 198(2):347-353
[26] Tirziu, D., Simons, M., 2005. Angiogenesis in the human heart: gene and cell therapy. Angiogenesis, 8(3):241-251.
[27] Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., Zeiher, A.M., Dimmeler, S., 2001. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res., 89(1):E1-E7.
[28] Walter, D.H., Rittig, K., Bahlmann, F.H., Kirchmair, R., Silver, M., Murayama, T., Nishimura, H., Losordo, D.W., Asahara, T., Isner, J.M., 2002. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation, 105(25):3017-3024.
[29] Wang, H.Y., Gao, P.J., Ji, K.D., Shen, W.F., Fan, C.L., Lu, L., Zhu, D.L., 2007. Circulating endothelial progenitor cells, C-reactive protein and severity of coronary stenosis in Chinese patients with coronary artery disease. Hypertens. Res., 30(2):133-141.
[30] Zhu, J., Wang, X., Chen, J., Sun, J., Zhang, F., 2006. Reduced number and activity of circulating endothelial progenitor cells from patients with hyperhomocysteinemia. Arch. Med. Res., 37(4):484-489.
[31] Zhu, J.H., Wang, X.X., Fu, G.S., Shang, Y.P., Zhang, F.R., Chen, J.Z., 2008. Reduced number and activity of circulating endothelial progenitor cells in patients with idiopathic pulmonary arterial hypertension. Respir. Med., 102(7):1073-1079.
Open peer comments: Debate/Discuss/Question/Opinion
<1>