CLC number: O186.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5024
ZHAO Li-li. On some projectively flat polynomial (α,β)-metrics[J]. Journal of Zhejiang University Science A, 2007, 8(6): 957-962.
@article{title="On some projectively flat polynomial (α,β)-metrics",
author="ZHAO Li-li",
journal="Journal of Zhejiang University Science A",
volume="8",
number="6",
pages="957-962",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0957"
}
%0 Journal Article
%T On some projectively flat polynomial (α,β)-metrics
%A ZHAO Li-li
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 6
%P 957-962
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0957
TY - JOUR
T1 - On some projectively flat polynomial (α,β)-metrics
A1 - ZHAO Li-li
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 6
SP - 957
EP - 962
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0957
Abstract: In this paper, we consider some polynomial (α,β)-metrics, and discuss the sufficient and necessary conditions for a finsler metric in the form F=α+a1β+a2β2/α+a4β4/α3 to be projectively flat, where ai (i=1,2,4) are constants with a1≠0, α is a Riemannian metric and β is a 1-form. By analyzing the geodesic coefficients and the divisibility of certain polynomials, we obtain that there are only five projectively flat cases for metrics of this type. This gives a classification for such kind of finsler metrics.
[1] Bácsó, S, Matsumoto, M., 1997. On Finsler spaces of Douglas type—a generalization of the notion of Berwald space. Publ. Math. Debrecen, 325:385-406.
[2] Chern, S.S., Shen, Z., 2005. Riemann-Finsler Geometry. World Scientific, Singapore, p.60-73.
[3] Hamel, G., 1903. Über die geometrieen in denen die Geraden die Kürzesten sind. Math. Ann., 57:231-264.
[4] Hilbert, D., 2001. Mathematical Problems. Bull. Amer. Math. Soc., 37:407-436. Reprinted from Bull. Amer. Math. Soc., 8(July 1902):437-479.
[5] Kitayama, M., Azuma, M., Matsumoto, M., 1995. On Finsler spaces with (α,β)-metric, regularity, geodesics and main scalar. J. Hokkaido Univ. Education, 46(1):1-10.
[6] Matsumoto, M., 1998. Finsler spaces with (α,β)-metric of Douglas type. Tensor, N.S., 60:123-134.
[7] Mo, X., Shen, Z., Yang, C., 2006. Some constructions of projectively flat Finsler metrics. Sci. in China (Ser. A), 49(5):703-714.
[8] Senarath, P., Thornley, G.M., 2004. Locally projectively flat Finsler spaces with (α,β)-metrics. Manuscript.
[9] Shen, Z., 2003. Projectively flat Randers metrics of constant flag curvature. Math. Ann., 325:19-30.
[10] Shen, Z., 2004. Landsberg Curvature, S-curvature and Riemann Curvature, in a Sampler of Riemann-Finsler Geometry. MSRI Series, Vol. 50, Cambridge University Press.
[11] Shen, Z., Civi Yildirim, G., 2005. On a class of projectively flat metrics of constant flag curvature. Can. J. Math., in press.
[12] Shen, Y.B., Zhao, L.L., 2006. Some projectively flat (α,β)-metrics. Sci. in China (Ser. A), 49(6):838-851.
[13] Yu, Y.Y., You, Y., 2006. Projectively flat exponential Finsler metrics. J. Zhejiang Univ. Sci. A, 7(6):1068-1076.
Open peer comments: Debate/Discuss/Question/Opinion
<1>