CLC number: X5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 31
Clicked: 6773
MAHMOOD Qaisar, ZHENG Ping, CAI Jing, HAYAT Yousaf, HASSAN Muhammad Jaffar, WU Dong-lei, HU Bao-lan. Sources of sulfide in waste streams and current biotechnologies for its removal[J]. Journal of Zhejiang University Science A, 2007, 8(7): 1126-1140.
@article{title="Sources of sulfide in waste streams and current biotechnologies for its removal",
author="MAHMOOD Qaisar, ZHENG Ping, CAI Jing, HAYAT Yousaf, HASSAN Muhammad Jaffar, WU Dong-lei, HU Bao-lan",
journal="Journal of Zhejiang University Science A",
volume="8",
number="7",
pages="1126-1140",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1126"
}
%0 Journal Article
%T Sources of sulfide in waste streams and current biotechnologies for its removal
%A MAHMOOD Qaisar
%A ZHENG Ping
%A CAI Jing
%A HAYAT Yousaf
%A HASSAN Muhammad Jaffar
%A WU Dong-lei
%A HU Bao-lan
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 7
%P 1126-1140
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1126
TY - JOUR
T1 - Sources of sulfide in waste streams and current biotechnologies for its removal
A1 - MAHMOOD Qaisar
A1 - ZHENG Ping
A1 - CAI Jing
A1 - HAYAT Yousaf
A1 - HASSAN Muhammad Jaffar
A1 - WU Dong-lei
A1 - HU Bao-lan
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 7
SP - 1126
EP - 1140
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1126
Abstract: Sulfide-containing waste streams are generated by a number of industries. It is emitted into the environment as dissolved sulfide (S2− and HS−) in wastewaters and as H2S in waste gases. Due to its corrosive nature, biological hydrogen sulfide removal processes are being investigated to overcome the chemical and disposal costs associated with existing chemically based removal processes. The nitrogen and sulfur metabolism interacts at various levels of the wastewater treatment process. Hence, the sulfur cycle offers possibilities to integrate nitrogen removal in the treatment process, which needs to be further optimized by appropriate design of the reactor configuration, optimization of performance parameters, retention of biomass and optimization of biomass growth. The present paper reviews the biotechnological advances to remove sulfides from various environments.
[1] Abeling, U., Seyfried, C.F., 1992. Anaerobic-aerobic treatment of high strength ammonium wastewater-nitrogen removal via nitrite. Wat. Sci. Tech., 26(5-6):1007-1015.
[2] Æsøy, A., Ødegaard, H., Bentzen, G., 1997. The effect of sulfide and organic matter on the nitrification activity in a biofilm process. Wat. Sci. Tech., 37(1):115-122.
[3] Almgren, T., Hagström, I., 1974. The oxidation rate of sulfide in sea water. Water Res., 8(7):395-400.
[4] Ammann, H.M., 1986. A new look at physiologic respiratory response to H2S poisoning. J. Haz. Mat., 13(3):369-374.
[5] Balmelle, B., Nguyen, K.M., Capdeville, B., Cornier, J.C., Deguin, A., 1992. Study of factors controlling nitrite build-up in biological processes for water nitrification. Wat. Sci. Tech., 26(5-6):1017-1025.
[6] Basu, R., Clausen, E.C., Gaddy, J.L., 1996. Biological conversion of hydrogen sulfide into elemental sulfur. Environ. Prog., 15(4):234-238.
[7] Benschop, A., Janssen, A., Hoksberg, M., Seriwala, R., Abry, R., Ngai, C., 2002. The Shell-Paques/THIOPAQ Gas Desulphurization Process: Successful Start Up First Commercial Unit. Http://www.paques.nl(2006/02/15)
[8] Bohn, H.L., Fu, Y., Huang, C.H., 1989. Hydrogen sulfide sorption by soils. Soil Sci. Soc. Am. J., 53(6):1914-1917.
[9] Brimblecombe, P., Hammer, C., Rodhe, H., Ryaboshapko, A., Boutron, C.F., 1989. Human Influence on the Sulfur Cycle. In: Brimblecombe, P., Lein, A.Y. (Eds.), Evolution of the Global Biogeochemical Sulfur Cycle, SCOPE 39. Wiley, Chichester, UK, p.77-121.
[10] Buisman, C.J.N., Prins, W.L., 1994. Symposium “Biological Water Streams, in Environmental Technology and Waste Gas Cleaning”. Heidelberg.
[11] Buisman, C.J.N., Geraats, B.G., Ijspeert, P., Lettinga, G., 1990. Optimization of sulfur production in a biotechnological sulfide-removing reactor. Biotechnol. Bioeng., 35(1):50-56.
[12] Butler, L., Nadan, S., 1981. Destructive oxidation of phenolics and sulfides using hydrogen peroxide. AIChE Symp. Ser., 229:108-111.
[13] Cadena, F., Peters, R.W., 1988. Evaluation of chemical oxidizers for hydrogen sulfide control. J. Water Pollut. Control Fed., 60(7):1259-1263.
[14] Cadenhead, P., Sublette, K.L., 1990. Oxidation of hydrogen sulfide by Thiobacilli. Biotechnol. Bioeng., 35(11):1150-1154.
[15] CARB (California Air Resources Board), 1999. Air Toxics Emissions Data Collected in the Air. Toxics Hot Spots Program. CEIDARS Database as of January 29, 1999.
[16] Cardenas-Gonzalez, B., Ergas, S.J., 1999. Characterization of compost biofiltration media. Journal of the Air and Waste Management Association, 49:784-793.
[17] Carlson, D.A., Leiser, C.P., 1966. Soil beds for the control of sewage odors. J. Water Pollut. Control Fed., 38(5):829-840.
[18] Castenholz, R.W., 1977. The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb. Ecol., 3(2):79-105.
[19] Cha, J.M., Cha, W.S., Lee, J.H., 1999. Removal of organosulphur odor compounds by Thiobacillus novellas SRM, sulphur-oxidizing microorganisms. Process Biochemistry, 34(6-7):659-665.
[20] Chen, K.Y., Morris, J.C., 1972a. Kinetics of oxidation of aqueous sulfide by oxygen. Environ. Sci. Technol., 6(6):529-537.
[21] Chen, K.Y., Morris, J.C., 1972b. Oxidation of sulfide by O2: Catalysis and inhibition. J. Sanit. Eng. Div., Proc. Am. Soc. Civ. Eng., 98(1):215-227.
[22] Chen, S.K., Juaw, C.K., Cheng, S.S., 1991. Nitrification and denitrification of high strength ammonium and nitrite wastewater with biofilm reactors. Wat. Sci. Tech., 23(7-9):1417-1425.
[23] Cho, K.S., Hirai, M., Makoto, S., 1992. Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. Journal of Fermentation and Bioengineering, 73(1):46-50.
[24] Cho, K.S., Ryu, H.W., Lee, N.Y., 2000. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans. Journal of Bioscience and Bioengineering, 90(1):25-31.
[25] Chou, M.S., Cheng, W.H., 1997. Screening of biofiltering material for VOC treatment. Journal of the Air and Waste Management Association, 47:674-681.
[26] Chung, Y.C., Huang, C., Tseng, C.P., 1996. Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulfide removal. Journal of Biotechnology, 52(1):31-38.
[27] Chung, Y.C., Huang, C., Li, C.F., 1997. Removal characteristics of H2S by Thiobacillus novellus CH3 biofilter in autotrophic and mixotrophic environments. J. Environ. Sci. Health, 32(5):1435-1450.
[28] Chung, Y.C., Huang, C., Tseng, C.P., 2001. Biotreatment of hydrogen sulfide- and ammonia-containing waste gases by fluidized bed bioreactor. Journal of the Air and Waste Management Association, 51:163-172.
[29] Clark, O.G., Edeogu, I., Feddes, J., Coleman, R.N., Abolghasemi, A., 2004. Effects of operating temperature and supplemental nutrients in a pilot-scale agricultural biofilter. Canadian Biosystems Engineering, 46:6.7-6.16.
[30] Cline, J.D., Richards, F.A., 1969. Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH. Environ. Sci. Techol., 3(9):838-843.
[31] Cork, D.J., Jerger, D.E., Maka, A., 1986. Biocatalytic production of sulfur from process waste streams. Biotechnol. Bioeng., 16:149-162.
[32] Cox, H.H.J., Deshusses, A.M., 2001. Co-treatment of H2S and toluene in a biotrickling filter. Chemical Engineering Journal, 3901:1-10.
[33] Cypionka, H., Widdel, F., Pfennig, N., 1985. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbial. Ecol., 31(1):39-45.
[34] Dastous, P.A., Soreanu, G., Nikiema, J., Heitz, M., 2005. Biofiltration of Three Alcohols on a Mature Bed Compost. 2005 A&WMA Annual Conference Proceedings CD-ROM, Paper #1038. Air and Water Management Association, Pittsburgh, PA.
[35] Davidova, I., Hicks, M.S., Fedorak, P.M., Sufita, J.M., 2001. The influence of nitrate on microbial processes in oil industry production waters. Journal of Industrial Microbiology and Biotechnology, 27(2):80-86.
[36] Dawson, D.S., 1993. Biological treatment of gaseous emissions. Water Environment Research, 65:368-371.
[37] Degorce-Dumas, H.R., Kowal, S., LeCloirec, P., 1997. Microbiological oxidation of hydrogen sulfide in a biofilter. Canadian Journal of Microbiology, 43:263-271.
[38] Devinny, J.S., Chitwood, D.E., 1999. Co-Treatment of VOC’s in Low-sulfide Biofilters. 92nd Annual Meeting and Exhibition. Air and Waste Management Associations, Missouri, St. Louis, p.9.
[39] Elias, A., Barona, A., Arreguy, A., Rios, J., Aranguiz, I., Penas, J., 2002. Evaluation of a packing material for the biodegradation of H2S and product analysis. Process Biochemistry, 37(8):813-820.
[40] Elizabeth, D., 2005. Http://www.chemrisk.com/team/pdfresume/DahlenResumeV2%20_2_Pdf
[41] Fdz-Polanco, F., Villaverde, S., Garcia, P.A., 1996. Nitrite accumulation in submerged biofilters-combined effects. Wat. Sci. Tech., 34(3-4):371-378.
[42] Gabriel, D., Deshusses, A.M., 2003. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proceedings of the National Academy of Science of the United States of America, 100(11):6308-6312.
[43] Gadd, G.M., White, C., 1993. Microbial treatment of metal pollution—A working biotechnology? Tibtech., 11:353-359.
[44] Gadre, R.V., 1989. Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnol. Bioeng., 34(3):410-414.
[45] Garrido, J.M., van Bethum, W.A.J., van Loosdrecht, M.C.M., Heijnen, J.J., 1997. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng., 53(2):168-178.
[46] Garuti, G., Dohanyos, M., Tilche A., 1992. Anaerobic-aerobic combined process for the treatment of sewage with nutrient removal: the ananox process. Wat. Sci. Tech., 25:383-394.
[47] Gostelow, P., Parsons, S.A., 2000. Sewage treatment works odour measurement. Wat. Sci. Tech., 41(6):33-40.
[48] Hao, O.J., Chen, J.M., Huang, L., Buglass, R.L., 1996. Sulfate-reducing bacteria. Crit. Rev. Env. Sci. Technol., 26:155-187.
[49] Henshaw, P.F., Bewtra, J.K., Biswas, N., 1998. Hydrogen sulfide conversion to elemental sulfur in a suspended-growth continuous stirred tank reactor using Chlorobium limicola. Water Res., 32(6):1769-1778.
[50] Hooper, A.B., Terry, K.R., 1973. Specific inhibitors of ammonia oxidation in Nitrosomonas. J. Bacteriol., 115:480-485.
[51] HSDB (Hazardous Substances Data Bank), 1999. U.S. National Library of Medicine, Bethesda, MD. Http://sis.nlm.nih.gov/sis1
[52] Hulshoff Pol, L.W., Lens, P.N.L., Stams, A.J.M., Lettinga, G., 1998. Anaerobic treatment of sulfate-rich wastewaters. Biodegradation, 9(3/4):213-224.
[53] Hvitved-Jacobsen, T., Vollertsen, J., Yongsiri, C., Nielsen, A.H., Abdul-Talib, S., 2002. Sewer Microbial Processes, Emissions and Impacts. 3rd International Conference on Sewer Processes and Networks, April 15-17, Paris, France.
[54] Janssen, A.J.H., Sleyster, R., van der Kaa, C., Jochemsen, A., Bontsema, J., Lettinga, G., 1995. Biological sulfide oxidation in a fed-batch reactor. Biotechnol. Bioeng., 47(3):327-333.
[55] Jensen, A.B., Webb, C., 1995. Treatment of H2S-containing gases: A review of microbiological alternatives. Enzyme Microb. Technol., 17(1):2-10.
[56] Jorio, H., Heitz, M., 1999. Traitement de l’air par biofiltration. Canadian Journal of Civil Engineering, 26(4):402-424.
[57] Jørgensen, B.B., Kuenen, J.G., Cohen, Y., 1979. Microbial transformation of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol. Oceanogr., 24:799-822.
[58] Kim, Y.J., Kim, B.W., 1996. Desulfurization in a platetype gas-lift photobioreactor using light emitting diodes. Korean J. Chem. Eng., 13(6):606-611.
[59] Kim, H., Kim, J.Y., Chung, S.J., Xie, Q., 2002. Long-term operation of a biofilter for simultaneous removal of H2S and NH3. Journal of the Air and Waste Management Association, 52:1389-1398.
[60] Kleerebezem, R., Mendez, R., 2002. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Wat. Sci. Tech., 45(10):349-356.
[61] Koe, L.C.C., Yang, F., 2000. A bioscrubber for hydrogen sulfide removal. Wat. Sci. Tech., 41(6):141-145.
[62] Kuenen, J.G., 1975. Colorless sulfur bacteria and their role in the sulfur cycle. Plant and Soil, 43(1-3):49-76.
[63] Kuenen, J.G., Robertson, L.A., 1992. The use of natural bacterial populations for the treatment of sulfur containing wastewater. Biodegradation, 3(2-3):239-254.
[64] Lampe, D.G., Zhang, T.C., 1996. Evaluation of Sulfur-based Autotrophic Denitrification. Proceedings of the HSRC/WERC Joint Conference on the Environment. Great Plains, Rocky Mountain Hazardous Substance Research Center. Http://www.engg.ksu.edu/HSRC/96Proceed/lampe.pdf (2006/02/16)
[65] Losier, L., 1990. Environmental Status Report of the Canadian Petroleum Refinery Industry 1987. Report EPS 1/PN/3. Environment Canada, Ottawa, Canada.
[66] Malhautier, L., Gracian, C., Roux, C.J., Fanlo, L.J., le Cloirec, P., 2003. Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere, 50(1):145-153.
[67] Martin, J.L., Rubin, A.J., 1978. Removal of Sulfides by Catalytic Oxygenation in Alkaline Media. Proceedings of 33rd International Waste Conference, Purdue University, p.814-822.
[68] Mathioudakis, V.L., Vaiopoulou, E., Aivasidis, A., 2005. Addition of Nitrate for Odor Control in Sewer Networks: Laboratory and Field Experiments. Conference on Environmental Science and Technology, September 1-3, 2005. Rhodes, Greece.
[69] McComas, C., Sublette, L.K., 2001. Characterization of a novel biocatalyst system for sulfide oxidation. Biotechnology Progress, 17(3):439-446.
[70] Melidis, P., Vaiopoulou, E., Aivasidis, A., 2004. Autotrophic Denitrification for Hydrogen Sulfide Removal from Petrochemical Wastewater. 10th World Congress of Anaerobic Digestion, Montreal, Canada.
[71] Mesa, M.M., Macías, M., Cantero, D., 2002. Biological iron oxidation by Acidithiobacillus ferrooxidans. Chemical and Biochemical Engineering Quarterly, 16(2):69-73.
[72] MOE (Ontario Ministry of the Environment), 1992. Background Document on the Development of the Draft Petroleum Refining Sector Effluent Limits Regulation. Toronto, Ontario.
[73] Morgan-Sagastume, M.J., Noyola, A., Revah, S., Ergas, J.S., 2003. Changes in physical properties of a compost biofilter treating hydrogen sulfide. Journal of Air and Waste Management Association, 53:1011-1021.
[74] Nielsen, P.H., Raunkjaer, K., Norsker, N.H., Jensen, N.A., Hvitved-Jacobsen, T., 1992. Transformation of wastewater in sewer systems—A review. Wat. Sci. Tech., 25(6):17-31.
[75] Nishimura, S., Yoda, M., 1997. Removal of hydrogen sulfide from anaerobic biogas using a bio-scrubber. Wat. Sci. Tech., 36(6-7):349-356.
[76] Oh, K.J., Kim, D., Lee, I.H., 1998. Development of effective hydrogen sulfide removing equipment using Thiobacillus sp. IW. Environ. Pollut., 99(1):87-92.
[77] Oren, A., Padan, E., 1978. Introduction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. J. Bacteriol., 133:558-563.
[78] Oren, A., Shilo, M., 1979. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch. Microbiol., 122(1):77-84.
[79] Ottengraf, S.P.P., 1986. Exhaust Gas Purification. Chapter (12) in Biotechnology 8. In: Rehm, H.J., Reed, G. (Eds.), VCH Verlagsgesellschaft. Weinheim, Germany, p.425-452.
[80] Oyarzún, P., Arancibia, F., Canales, C., Aroca, G.E., 2003. Biofiltration of high concentration of hydrogen sulfide using Thiobacillus thioparus. Process Biochemistry, 39(2):165-170.
[81] Rinzema, A., Lettinga, G., 1988. Anaerobic Treatment of Sulfate Containing Waste Water. In: Wise, D.L. (Ed.), Biotreatment Systems. CRC Press, Boca Raton, FL, 3:65-109.
[82] Scheeren, P.J.H., Koch, R.O., Buisman, C.J.N., Barnes, L.J., Versteegh, J.H., 1991. New biological treatment plant for heavy metal contaminated groundwater. Trans. Instn. Min. Metall. (Sect. C: Mineral Process. Extr. Metall.), 101:C190-C199.
[83] Schieder, D., Quicker, P., Schneider, R., Winter, H., Prechtl, S., Faulstich, M., 2003. Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: Experience with technical operation. Wat. Sci. Tech., 48(4):209-212.
[84] Sercu, B., Núñez, D., Langenhove, V.H., Aroca, G., Verstraete, W., 2005. Operational and microbiological aspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide. Biotechnology and Bioengineering, 90(2):259-269.
[85] Shareefdeen, Z., Herner, B., Wilson, S., 2002. Biofiltration of nuisance sulfur gaseous odors from a meat rendering plant. Journal of Chemical Technology and Biotechnology, 77(12):1296-1299.
[86] Soreanu, G., Al-Jamal, M., Béland, M., 2005. Biogas Treatment Using an Anaerobic Biosystem. Proceedings of the 3rd Canadian Organic Residuals and Biosolids Management Conference, Calgary, AB, p.502-513.
[87] Sorokin, Y.I., 1972. The bacterial population and the process of hydrogen sulfide oxidation in the Black Sea. J. Conseil Int. Explor. Mer., 34:423-455.
[88] Sublette, K.L., 1987. Aerobic oxidation of sulfide by Thiobacillus denitrificans. Biotechnol. Bioeng., 29(6):690-695.
[89] Sublette, K.L., Sylvester, D., 1987a. Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans. Biotechnol. Bioeng., 29(6):753-758.
[90] Sublette, K.L., Sylvester, D., 1987b. Oxidation of hydrogen sulfide by mixed cultures of Thiobacillus denitrificans and heterotrophs. Biotechnol. Bioeng., 29(6):759-761.
[91] Sublette, K.L., Heskth, R.P., Hasan, S., 1994. Microbial oxidation of hydrogen sulfide in a pilot-scale bubble column. Biotechnology Progress, 10(6):611-614.
[92] Syed, M., Soreanu, G., Falletta, P., Béland, M., 2006. Removal of hydrogen sulfide from gas streams using biological processes—A review. Canadian Biosystems Engineering, 48:210-214.
[93] Takano, B., Koshida, M., Fujiwara, Y., Sugimori, K., Takayangi, S., 1997. Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yugama Crater Lake, Kusatsu-Shirane volcano, Japan. Biogeochemistry, 38(3):227-253.
[94] Tichý, R., Janssen, A., Grotenhuis, J.T.C., Lettinga, G., Rulkens, W.H., 1994. Possibilities for using biologically-produced sulfur particles for cultivation of Thiobacilli with respect to bioleaching processes. Biores. Technol., 48(3):221-227.
[95] Tichý, R., Lens, P., Grotenhuis, J.T.C., Bos, P., 1998. Solid-state reduced sulfur compounds: environmental aspects and bioremediation. Crit. Rev. Environ. Sci. Tech., 28:1-40.
[96] USEPA, 1998. Sewer and Tank Sediment Flushing. Case Studies EPA/600/R-98/157, Chapter 4: Hydrogen Sulfide and Sulfuric Acid Estimation Techniques.
[97] Vaiopoulou, E., Melidis, P., Aivasidis, A., 2005. Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Res., 39(17):4101-4109.
[98] van der Hoek, J.P., Latour, P.J.M., Klapwijk, A., 1988. Effect of hydraulic residence time on microbial sulfide production in an upflow sludge blanket denitrification reactor fed with methanol. Appl. Microbiol. Biotechnol., 28(4-5):493-499.
[99] Wani, A.H., Lau, A.K., Branion, M.R., 1999. Biofiltration control of pulping odors-hydrogen sulfide: performance, microkinetics and coexistence effects of organo-sulfur species. Journal of Chemical Technology and Biotechnology, 74(1):9-16.
[100] Watkins, J.P., 1977. Controlling sulfur compounds in wastewaters. Chemical Engineering, 84:61-65.
[101] WHO, 1981. Environmental Health Criteria 19. Geneva.
[102] Widdel, F., 1988. Microbiology and Ecology of Sulfate- and Sulfur Reducing Bacteria. In: Zehnder, A.J.B. (Ed.), Biology of Anaerobic Microorganisms. Wiley, New York, p.469-585.
[103] Yang, Y., 1992. Biofiltration for Control of Hydrogen Sulfide. Ph.D Thesis, University of Florida, Gainesville, FL, p.199.
[104] Yang, Y., Allen, E.R., 1994a. Biofiltration control of hydrogen sulfide. 1. Design and operational parameters. Journal of the Air and Waste Management Association, 44:863-868.
[105] Yang, Y., Allen, E.R., 1994b. Biofiltration control of hydrogen sulfide. 2. Kinetics, biofilter performance and maintenance. Journal of the Air and Waste Management Association, 44:1315-1321.
[106] Yoo, H.S., Ahn, K.H., Lee, H.J., Lee, K.H., Kwak, Y.J., K.G., Song, 1999. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently aerated reactor. Water Res., 33(1):145-154.
[107] Zehnder, A.J.B., 1988. Principles of the Biological Sulfur Cycle. Biology of Anaerobic Microorganisms, John Wiley & Sons, Inc., USA, p.546-560.
[108] Zehnder, A.J.B., Zinder, S.H., 1980. The Sulfur Cycle. In: Hutzinger, O. (Ed.), The Handbook of Environmental Chemistry, Pt. A. Springer-Verlag, Heidelberg, 1:105-145.
[109] Zhang, L., Hirai, M., Shoda, M., 1991. Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hiphomicrobium sp. I55 isolated from peat biofilter. Journal of Fermentation and Bioengineering, 72(5):392-396.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Twemivykeenny@No address<cidciswilli@gmail.com>
2012-02-13 18:25:41
Thanks very much for a very clear overview.
jicelasEO@No address<prixviagra@yahoo.fr>
2011-02-23 21:41:01
thanks for this tips