CLC number: TH137
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 6441
ZOU Jun, FU Xin, YANG Hua-yong. Active disturbance rejection control for hydraulic width control system for rough mill[J]. Journal of Zhejiang University Science A, 2007, 8(9): 1429-1434.
@article{title="Active disturbance rejection control for hydraulic width control system for rough mill",
author="ZOU Jun, FU Xin, YANG Hua-yong",
journal="Journal of Zhejiang University Science A",
volume="8",
number="9",
pages="1429-1434",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1429"
}
%0 Journal Article
%T Active disturbance rejection control for hydraulic width control system for rough mill
%A ZOU Jun
%A FU Xin
%A YANG Hua-yong
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 9
%P 1429-1434
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1429
TY - JOUR
T1 - Active disturbance rejection control for hydraulic width control system for rough mill
A1 - ZOU Jun
A1 - FU Xin
A1 - YANG Hua-yong
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 9
SP - 1429
EP - 1434
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1429
Abstract: The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve fast response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation, compared with classic PI controller.
[1] Bonchis, A., Corke, P.I., Rye, D.C., Ha, Q.P., 2001. Variable structure methods in hydraulic servo systems control. Automatica, 37(4):589-595.
[2] Han, J.Q., 1988. Linear and nonlinear of feedback system. Control and Decision, 3(2):27-32 (in Chinese).
[3] Han, J.Q., 1990. The realization of state feedback in a class of nonlinear systems. Control and Decision, 5(3):57-60 (in Chinese).
[4] Han, J.Q., 1994. Nonlinear PID controller. Acta Automatic Sinica, 20(4):487-490 (in Chinese).
[5] Han, J.Q., 1998. Active disturbances rejection controller and applications. Control and Decision, 13(1):19-23 (in Chinese).
[6] Kim, M.Y., Lee, C.O., 2006. An experimental study on the optimization of controller gains for an electro-hydraulic servo system using evolution strategies. Control Engineering Practice, 14(2):137-147.
[7] Laval, L., Msiridi, N.K., Cadiou, J.C., 1996. H∞ force Control of Hydraulic Servo-actuator with Environmental Uncertainties. Proceedings of IEEE International Conference on Robotics and Automatics, 2:1566-1571.
[8] Li, G., Khajepour, A., 2005. Robust control of a hydraulically driven flexible arm using backstepping technique. Journal of Sound and Vibration, 280(3-5):759-775.
[9] Merrit, H.E., 1967. Hydraulic Control Systems. Wiley and Sons, New York.
[10] Sekhavat, P., Sepehri, N., Wu, Q., 2006. Impact stabilizing controller for hydraulic actuators with friction: theory and experiments. Control Engineering Practice, 14(12):1423-1433.
[11] You, S.H., Hahn, J.O., Cho, Y.M., Lee, K., 2006. Modeling and control of a hydraulic unit for direct yaw moment control in an automobile. Control Engineering Practice, 14(9):1011-1022.
[12] Yu, H., Feng, Z.J., Wang, X.Y., 2004. Nonlinear control for a class of hydraulic servo system. Journal of Zhejiang University SCIENCE, 5(11):1413-1417.
[13] Yun, J.S., Cho, H.S., 1988. Adaptive model following control of electrohydraulic velocity control systems subjected to unknown disturbances. IEEE Proceedings on Control Theory and Application, 135(2):149-156.
[14] Zhao, Y.Q., Sinh, L.Q., Mararouf, S., 1998. Nonlinear Fuzzy Control on a Hydraulic Servo System. Proceedings of American Control Conference, p.2917-2921.
[15] Zou, J., Fu, X., Yang, H.Y., Zhang, J.M., 2005. Application of immune PID controller in hydraulic servo control system. Chinese Journal of Mechanical Engineering, 41(1):1-5 (in Chinese).
[16] Zou, J., Fu, X., Yang, H.Y., Zhang, J.M., 2006. A Particle Swarm Optimization Approach for PID Parameters in Hydraulic Servo Control System. The Sixth World Congress on Intelligent Control and Automation, 2:7725-7729.
Open peer comments: Debate/Discuss/Question/Opinion
<1>