CLC number: TM315; TM614
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 10
Clicked: 6294
HU Jia-bing, HE Yi-kang. Multi-frequency proportional-resonant (MFPR) current controller for PWM VSC under unbalanced supply conditions[J]. Journal of Zhejiang University Science A, 2007, 8(10): 1527-1531.
@article{title="Multi-frequency proportional-resonant (MFPR) current controller for PWM VSC under unbalanced supply conditions",
author="HU Jia-bing, HE Yi-kang",
journal="Journal of Zhejiang University Science A",
volume="8",
number="10",
pages="1527-1531",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1527"
}
%0 Journal Article
%T Multi-frequency proportional-resonant (MFPR) current controller for PWM VSC under unbalanced supply conditions
%A HU Jia-bing
%A HE Yi-kang
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 10
%P 1527-1531
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1527
TY - JOUR
T1 - Multi-frequency proportional-resonant (MFPR) current controller for PWM VSC under unbalanced supply conditions
A1 - HU Jia-bing
A1 - HE Yi-kang
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 10
SP - 1527
EP - 1531
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1527
Abstract: This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in place of the shift operator for the implementation of MFPR by using a low-cost fixed-point DSP. The experimental results with an alternative control strategy validated the feasibility of the proposed MFPR current controller for the PWM VSC during voltage unbalance.
[1] Kauraniemi, J., Laakso, T.I., Hartimo, I., Ovaska, S.J., 1998. Delta operator realizations of direct-form IIR filters. IEEE Trans. on Circuits & Systems II—Analog and Digital Signal Processing, 45(1):41-52.
[2] Magueed, F.A., Sannino, A., Svensson, J., 2004. Transient Performance of Voltage Source Converter Under Unbalanced Voltage Dips. Proc. IEEE-PESC Annu. Meeting, p.1207-1211.
[3] Newman, M.J., Holmes, D.G. 2003. Delta operator digital filters for high performance inverter applications. IEEE Trans. on Power Electron., 18(1):447-454.
[4] Rioual, P., Pouliquen, H., Louis, J., 1996. Regulation of a PWM rectifier in the unbalanced network state using a generalized model. IEEE Trans. on Power Electron., 11(3):495-502.
[5] Song, H.S., Nam, K., 1999. Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Trans. on Ind. Eelectron., 46(5):953-959.
[6] Stankovic, A.V., Lipo, T.A., 2001. A novel control method for input output harmonic elimination of the PWM boost type rectifier under unbalanced operating conditions. IEEE Trans. on Power Electron., 16(5):603-611.
[7] Xu, L., Andersen, B.R., Cartwright, P., 2005. VSC transmission operating under unbalanced AC conditions—analysis and control design. IEEE Trans. on Power Del., 20(1):427-434.
[8] Yazdani, A., Iravani, R., 2006. A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions. IEEE Trans. on Power Del., 21(3):1620-1629.
[9] Zmood, D.N., Holmes, D.G., 2003. Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Trans. on Power Electron., 18(3):814-822.
Open peer comments: Debate/Discuss/Question/Opinion
<1>