CLC number: Q78; TP31
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 6057
LEE Sang Hong, VAN DER Werf J.H. Julius. Fine mapping of multiple interacting quantitative trait loci using combined linkage disequilibrium and linkage information[J]. Journal of Zhejiang University Science B, 2007, 8(11): 787-791.
@article{title="Fine mapping of multiple interacting quantitative trait loci using combined linkage disequilibrium and linkage information",
author="LEE Sang Hong, VAN DER Werf J.H. Julius",
journal="Journal of Zhejiang University Science B",
volume="8",
number="11",
pages="787-791",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.B0787"
}
%0 Journal Article
%T Fine mapping of multiple interacting quantitative trait loci using combined linkage disequilibrium and linkage information
%A LEE Sang Hong
%A VAN DER Werf J.H. Julius
%J Journal of Zhejiang University SCIENCE B
%V 8
%N 11
%P 787-791
%@ 1673-1581
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.B0787
TY - JOUR
T1 - Fine mapping of multiple interacting quantitative trait loci using combined linkage disequilibrium and linkage information
A1 - LEE Sang Hong
A1 - VAN DER Werf J.H. Julius
J0 - Journal of Zhejiang University Science B
VL - 8
IS - 11
SP - 787
EP - 791
%@ 1673-1581
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.B0787
Abstract: quantitative trait loci (QTL) and their additive, dominance and epistatic effects play a critical role in complex trait variation. It is often infeasible to detect multiple interacting QTL due to main effects often being confounded by interaction effects. Positioning interacting QTL within a small region is even more difficult. We present a variance component approach nested in an empirical Bayesian method, which simultaneously takes into account additive, dominance and epistatic effects due to multiple interacting QTL. The covariance structure used in the variance component approach is based on combined linkage disequilibrium and linkage (LDL) information. In a simulation study where there are complex epistatic interactions between QTL, it is possible to simultaneously fine map interacting QTL using the proposed approach. The present method combined with LDL information can efficiently detect QTL and their dominance and epistatic effects, making it possible to simultaneously fine map main and epistatic QTL.
[1] Blangero, J., Williams, J.T., Almasy, L., 2000. Quantitative trait locus mapping using human pedigrees. Hum. Biol., 72(1):35-62.
[2] Blangero, J., Williams, J.T., Almasy, L., 2001. Variance component methods for detecting complex trait loci. Adv. Genet., 42:151-181.
[3] Casella, G., 2001. Empirical Bayes Gibbs sampling. Biostatistics, 2(4):485-500.
[4] Cockerham, C.C., 1954. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics, 39(6):859-882.
[5] Dallas, J.F., 1992. Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mamm. Genome, 3(8):452-456.
[6] Ellegren, H., 1995. Mutation rates at porcine microsatellite loci. Mamm. Genome, 6(5):376-377.
[7] Lee, S.H., van der Werf, J.H.J., 2006. Simultaneous fine mapping of multiple closely linked quantitative trait loci using combined linkage disequilibrium and linkage with a general pedigree. Genetics, 173(4):2329-2337.
[8] Lee, S.H., van der Werf, J.H.J., Tier, B., 2005. Combining the meiosis Gibbs sampler with the random walk approach for linkage and association studies with a general complex pedigree and multi marker loci. Genetics, 171(4):2063-2072.
[9] MacCluer, J.W., VanderBerg, J.L., Raed, B., Ryder, O.A., 1986. Pedigree analysis by computer simulation. Zoo Biology, 5(2):147-160.
[10] Meuwissen, T.H.E., Goddard, M.E., 2000. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics, 155(1):421-430.
[11] Meuwissen, T.H.E., Goddard, M.E., 2001. Prediction of identity by descent probabilities from marker-haplotypes. Genet. Sel. Evol., 33(6):605-634.
[12] Mitchell, B.D., Ghosh, S., Schneider, J.L., Birznieks, G., Blangero, J., 1997. Power of variance component linkage analysis to detect epistasis. Genetic. Epidemiology, 14(6):1017-1022.
[13] Purcell, S., Sham, P.C., 2004. Epistasis in quantitative trait locus linkage analysis. Behavior Genetics, 34(2):143-152.
[14] Weber, J.L., Wong, C., 1993. Mutation of human short tandem repeats. Hum. Mol. Genet., 2(8):1123-1128.
Open peer comments: Debate/Discuss/Question/Opinion
<1>