CLC number: TH12
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 8
Clicked: 6901
Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG. Optimal design of pressure vessel using an improved genetic algorithm[J]. Journal of Zhejiang University Science A, 2008, 9(9): 1264-1269.
@article{title="Optimal design of pressure vessel using an improved genetic algorithm",
author="Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG",
journal="Journal of Zhejiang University Science A",
volume="9",
number="9",
pages="1264-1269",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820217"
}
%0 Journal Article
%T Optimal design of pressure vessel using an improved genetic algorithm
%A Peng-fei LIU
%A Ping XU
%A Shu-xin HAN
%A Jin-yang ZHENG
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 9
%P 1264-1269
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820217
TY - JOUR
T1 - Optimal design of pressure vessel using an improved genetic algorithm
A1 - Peng-fei LIU
A1 - Ping XU
A1 - Shu-xin HAN
A1 - Jin-yang ZHENG
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 9
SP - 1264
EP - 1269
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820217
Abstract: As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure constraint. The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis (FEA). A penalty function in the fitness function is proposed to deal with the constrained problem. The effects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored. The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.
[1] Blachut, J., Eschenauer, H.A., 2001. Emerging Methods for Multidisciplinary Optimization. Springer, Wien, New York.
[2] Blachut, J., Vu, V.T., 2007. Burst pressures for torispheres and shallow spherical caps. Strain, 43(1):26-36.
[3] de Vicente, J., Lanchares, J., Hermida, R., 2003. Placement by thermodynamic simulated annealing. Physics Letters A, 317(5-6):415-423.
[4] Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, p.1-44.
[5] Hyder, J.M., Asif, M., 2008. Optimization of location and size of opening in a pressure vessel cylinder using ANSYS. Engineering Failure Analysis, 15(1-2):1-19.
[6] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing. Science, 220(4598):671-680.
[7] Liu, J.S., Parks, G.T., Clarkson, P.J., 2001. Shape optimization of axisymmetric cylindrical nozzles in spherical pressure vessels subject to stress constraints. International Journal of Pressure Vessels and Piping, 78(1):1-9.
[8] Liu, P.F., Zheng, J.Y., Ma, L., Miao, C.J., Wu, L.L., 2008. Calculations of plastic collapse load of pressure vessel using FEA. Journal of Zhejiang University SCIENCE A, 9(7):900-906.
[9] Magnucki, K., Lewiński, J., Stasiewicz, P., 2004. Optimal sizes of a ground-based horizontal cylindrical tank under strength and stability constraints. International Journal of Pressure Vessels and Piping, 81(12):913-917.
[10] Schmitt, L.M., 2001. Theory of genetic algorithms. Theoretical Computer Science, 259(1-2):1-61.
Open peer comments: Debate/Discuss/Question/Opinion
<1>