CLC number: TP753
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-08-12
Cited: 36
Clicked: 7473
Hua-sheng SUN, Jing-feng HUANG, Alfredo R. HUETE, Dai-liang PENG, Feng ZHANG. Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China[J]. Journal of Zhejiang University Science A, 2009, 10(10): 1509-1522.
@article{title="Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China",
author="Hua-sheng SUN, Jing-feng HUANG, Alfredo R. HUETE, Dai-liang PENG, Feng ZHANG",
journal="Journal of Zhejiang University Science A",
volume="10",
number="10",
pages="1509-1522",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820536"
}
%0 Journal Article
%T Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China
%A Hua-sheng SUN
%A Jing-feng HUANG
%A Alfredo R. HUETE
%A Dai-liang PENG
%A Feng ZHANG
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 10
%P 1509-1522
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820536
TY - JOUR
T1 - Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China
A1 - Hua-sheng SUN
A1 - Jing-feng HUANG
A1 - Alfredo R. HUETE
A1 - Dai-liang PENG
A1 - Feng ZHANG
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 10
SP - 1509
EP - 1522
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820536
Abstract: The objective of this study was to obtain spatial distribution maps of paddy rice fields using multi-date moderate-resolution imaging spectroradiometer (MODIS) data in china. paddy rice fields were extracted by identifying the unique characteristic of high soil moisture in the flooding and transplanting period with improved algorithms based on rice growth calendar regionalization. The characteristic could be reflected by the enhanced vegetation index (EVI) and the land surface water index (LSWI) derived from MODIS sensor data. Algorithms for single, early, and late rice identification were obtained from selected typical test sites. The algorithms could not only separate early rice and late rice planted in the same fields, but also reduce the uncertainties. The areal accuracy of the MODIS-derived results was validated by comparison with agricultural statistics, and the spatial matching was examined by ETM+ (enhanced thematic mapper plus) images in a test region. Major factors that might cause errors, such as the coarse spatial resolution and noises in the MODIS data, were discussed. Although not suitable for monitoring the inter-annual variations due to some inevitable factors, the MODIS-derived results were useful for obtaining spatial distribution maps of paddy rice on a large scale, and they might provide reference for further studies.
[1] CEPD (Council for Economic Planning and Development), 2006. Taiwan Statistical Data Book 2006. Council for Economic Planning and Development, Taipei.
[2] Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L., 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing Environ., 91(3-4): 332-344.
[3] Cihlar, J., 1996. Identification of contaminated pixels in AVHRR composite images for studies of land biosphere. Remote Sensing Environ., 56(3):149-153.
[4] ECCAY (Editorial Committee of China Agriculture Yearbook), 2006. China Agriculture Yearbook 2006. China Agricultural Press, Beijing (in Chinese).
[5] Fang, H., Wu, B., Liu, H., Huang, X., 1998. Using NOAA AVHRR and Landsat TM to estimate rice area year-by-year. Int. J. Remote Sensing, 19(3):521-525.
[6] Fensholt, R., Sandholt, I., 2003. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semi-arid environment. Remote Sensing Environ., 87(1):111-121.
[7] Gao, B.C., 1996. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing Environ., 58(3):257-266.
[8] Groten, S.M.E., 1993. NDVI: crop monitoring and early yield assessment of Burkina Faso. Int. J. Remote Sensing, 14(8):1495-1515.
[9] Hong, S.Y., Lee, K.S., Rim, S.K., Kim, K.U., 1999. Estimation of Rice Field Area Using Two-date Landsat TM Images in Korea. Proc. IEEE Int. Geoscience and Remote Sensing Symp., 2:732-734.
[10] Huete, A.R., Liu, H.Q., Batchily, K., van Leeuwen, W., 1997. A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sensing Environ., 59(3):440-451.
[11] Huete, A.R., Didan, K., Miura, T., Rodriguez, E., Gao, X., Ferreira, L., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing Environ., 83(1-2):195-213.
[12] Jönsson, P., Eklundh, L., 2004. TIMESAT: a program for analyzing time-series of satellite sensor data. Comput. & Geosci., 30(8):833-845.
[13] Li, C., Qiu, J., Frolking, S., Xiao, X., Salas, W., Moore, B., Boles, S., Huang, Y., Sass, R., 2002. Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980-2000. Geophys. Res. Lett., 29(20):1972.
[14] Li, Y., Liao, Q., Li, X., Liao, S., Chi, G., Peng, S., 2003. Towards an operational system for regional-scale rice yield estimation using a time-series of Radarsat ScanSAR images. Int. J. Remote Sensing, 24(21):4207-4220.
[15] MacDonald, R.B., Hall, F.G., 1980. Global crop forecasting. Science, 208(4445):670-679.
[16] McCloy, K.R., Smith, F.R., Robinson, M.R., 1987. Monitoring rice areas using Landsat MSS data. Int. J. Remote Sensing, 8(5):741-749.
[17] Nageswara Rao, P.P., Rao, V.R., 1987. Rice crop identification and area estimation using remotely sensed data from Indian cropping patterns. Int. J. Remote Sensing, 8(4):639-650.
[18] Neue, H., Boonjawat, J., 1998. Methane Emissions from Rice Fields. In: Galloway, J., Melillo, J. (Eds.), Asian Change in the Context of Global Climate Change. IGBP Book Series. Cambridge University Press, Cambridge, UK, p.187-209.
[19] Okamoto, K., Kawashima, H., 1999. Estimation of rice-planted area in the tropical zone using a combination of optical and microwave satellite sensor data. Int. J. Remote Sensing, 20(5):1045-1048.
[20] Ribbes, F., le Toan, T., 1999. Rice field mapping and monitoring with RADARSAT data. Int. J. Remote Sensing, 20(4):745-765.
[21] Roy, D.P., Borak, J.S., Devadiga, S., Zheng, M., Descloitres, J., 2002. The MODIS land product quality assessment approach. Remote Sensing Environ., 83(1-2):62-76.
[22] Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., Ohno, H., 2005. A crop phenology detection method using time-series MODIS data. Remote Sensing Environ., 96(3-4):366-374.
[23] Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36(8):1627-1639.
[24] Sellers, P.J., Tucker, C.J., Collatz, G.J., Los, S.O., Justice, C.O., Dazlich, D.A., Randall, D.A., 1994. A global 1° by 1° NDVI data set for climate studies: Part II. The generation of global fields of terrestrial biophysical parameters from the NDVI. Int. J. Remote Sensing, 15(17):3519-3545.
[25] Shao, Y., Fan, X., Liu, H., 2001. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sensing Environ., 76(3):310-325.
[26] Tennakoon, S.B., Murty, V.V.N., Eiumnoh, A., 1992. Estimation of cropped area and grain yield of rice using remote sensing data. Int. J. Remote Sensing, 13(3):427-439.
[27] Turner, M.D., Congalton, R.G., 1998. Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African flood plain. Int. J. Remote Sensing, 19(1):21-41.
[28] van der Gon, H.D., 2000. Changes in CH4 emission from rice fields from 1960s to 1990s: 1. Impacts of modern rice technology. Glob. Biogeochem. Cycles, 14(1):61-72.
[29] Viovy, N., Arino, O., Belward, A., 1992. The best index slope extraction (BISE): a method for reducing noise in NDVI time-series. Int. J. Remote Sensing, 13(8):1585-1590.
[30] Xiao, X., Boles, S., Frolking, S., Salas, W., Moore, B., Li, C., He, L., Zhao, R., 2002a. Landscape-scale characterization of cropland in China using Vegetation and Landsat TM images. Int. J. Remote Sensing, 23(18):3579-3594.
[31] Xiao, X., Boles, S., Frolking, S., Salas, W., Moore, B., Li, C., He, L., Zhao, R., 2002b. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using Vegetation sensor data. Int. J. Remote Sensing, 23(15):3009-3022.
[32] Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., Moore, B., 2005. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing Environ., 95(4):480-492.
[33] Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J.Y., Salas, W., Moore, B., 2006. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing Environ., 100(1):95-113.
Open peer comments: Debate/Discuss/Question/Opinion
<1>