CLC number: TP2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-01-27
Cited: 1
Clicked: 5786
Shuo Hung Chang, Jen Bon Lee. Design of a long range nano-scale resolution mechanism[J]. Journal of Zhejiang University Science A, 2010, 11(4): 250-254.
@article{title="Design of a long range nano-scale resolution mechanism",
author="Shuo Hung Chang, Jen Bon Lee",
journal="Journal of Zhejiang University Science A",
volume="11",
number="4",
pages="250-254",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000029"
}
%0 Journal Article
%T Design of a long range nano-scale resolution mechanism
%A Shuo Hung Chang
%A Jen Bon Lee
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 4
%P 250-254
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000029
TY - JOUR
T1 - Design of a long range nano-scale resolution mechanism
A1 - Shuo Hung Chang
A1 - Jen Bon Lee
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 4
SP - 250
EP - 254
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000029
Abstract: This paper presents the development of a coarse-fine dual precision positioning stage to achieve long travel range and high accuracy. The fine stage is arranged in series with a coarse stage. The key in the fine stage design is the choice of a toggle mechanism for a tight mechanical loop with high stiffness and compactness. We designed the toggle mechanism for reduction of the displacement to suppress signal noises. The performance of the coarse and fine stages was verified with an optical encoder and capacitive sensor, respectively. The measurement results show that the dual mechanism has a travel range of 1 mm and resolution of 30 nm.
[1]Chang, S.H., Du, B.C., 1998. A precision piezodriven micropositioner mechanism with large travel range. Review of Scientific Instruments, 69(4):1785-1791.
[2]Chang, S.H., Li, S.S., 1999. A friction-drive micropositioner with programmable step size. Review of Scientific Instruments, 70(6):2776-2782.
[3]Kimiyuki, M., Goto, T., 1996. Development of Dual Servo STM. ASPE Proceedings, 14:146-149.
[4]Liu, H.Z., Lu, B.H., Ding, Y.C., Tang, Y.P., Li, D.C., 2003. A motor-piezo actuator for nano-scale positioning based on dual servo loop and nonlinearity compensation. Journal of Micromechanics and Microengineering, 13(2):295-299.
[5]Losilla, N.S., Oxtoby, N.S., Martinez, J., Garcia, F., Garcia, R., Mas-Torrent, M., Veciana, J., Rovira, C., 2008. Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography. Nanotechnology, 19(45):455308-455314.
[6]Wang, Y.C., Chang, S.H., 2006. Design and performance of a piezoelectric actuated precise rotary positioner. Review of Scientific Instruments, 77:10510-1-10501-5.
[7]Wu, T.L., Chen, J.H., Chang, S.H., 2008. A Six-DOF Prismatic-spherical-spherical Parallel Compliant Nanopositioner. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 55(12):2544-2551.
[8]Yang, B.T., Bonis, M., Tao, H., Prelle, C., Lamarque, F., 2006. A magnetostrictive mini actuator for long-stroke positioning with nanometer resolution. Journal of Micromechanics and Microengineering, 16(7):1227-1232.
Open peer comments: Debate/Discuss/Question/Opinion
<1>