Full Text:   <3833>

CLC number: TK284.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-01-23

Cited: 17

Clicked: 8357

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.2 P.137-146

http://doi.org/10.1631/jzus.A1200146


Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve*


Author(s):  Zhi-jiang Jin1, Lin Wei1, Li-long Chen2, Jin-yuan Qian1, Ming Zhang2

Affiliation(s):  1. Institute of Chemical Machinery and Process Equipment, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   jzj@zju.edu.cn

Key Words:  Numerical simulation, Pressure and temperature reducing system, Pressure reducing valve (PRV), Double throttling, Structural improvement


Zhi-jiang Jin, Lin Wei, Li-long Chen, Jin-yuan Qian, Ming Zhang. Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve[J]. Journal of Zhejiang University Science A, 2013, 14(2): 137-146.

@article{title="Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve",
author="Zhi-jiang Jin, Lin Wei, Li-long Chen, Jin-yuan Qian, Ming Zhang",
journal="Journal of Zhejiang University Science A",
volume="14",
number="2",
pages="137-146",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200146"
}

%0 Journal Article
%T Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve
%A Zhi-jiang Jin
%A Lin Wei
%A Li-long Chen
%A Jin-yuan Qian
%A Ming Zhang
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 2
%P 137-146
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200146

TY - JOUR
T1 - Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve
A1 - Zhi-jiang Jin
A1 - Lin Wei
A1 - Li-long Chen
A1 - Jin-yuan Qian
A1 - Ming Zhang
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 2
SP - 137
EP - 146
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200146


Abstract: 
In this paper, a new pressure reducing valve (PRV) with an orifice plate is proposed. The main objective is to explain the mechanisms of pressure reduction and energy conversion in the new PRV. A numerical simulation method was used to investigate the PRV internal flow field and to analyze the throttling effects of the orifice plate and the transform of thermal parameters as outlet pressure, outlet temperature, velocity, and superheat. A structure improvement method for the valve body and orifice plate is put forward to reduce energy loss. The governing equations for internal flow numerical simulation are composed of the continuity, momentum, energy and k-ε transport equations, based on isotropic eddy viscosity theory. Different valve plug displacement models were built to describe the double throttling process. Our analysis shows that the steam pressure drops twice and the degree of superheat increases. There are also lots of eddies which clog the flow channel and disturb the steam flow in the valve cavity after the valve plug and the outlet cavity. After modifying the structure, the numerical results show a better performance of steam flow.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Amini, A., Owen, I., 1995. A practical solution to the problem of noise and vibration in a pressure-reducing valve. Experimental Thermal and Fluid Science, 10(1):136-141. 


[2] Amirante, R., Del Vescovo, G., Lippolis, A., 2006. Flow forces analysis of an open center hydraulic directional control valve sliding spool. Energy Conversion Management, 47(1):114-131. 


[3] Amirante, R., Del Vescovo, G., Lippolis, A., 2006. Evaluation of the flow forces on an open centre directional control valve by means of a computational fluid dynamic analysis. Energy Conversion Management, 47(13-14):1748-1760. 


[4] Amirante, R., Moscatelli, P.G., Catalano, L.A., 2007. Evaluation of the flow forces on a direct (single stage) proportional valve by means of a computational fluid dynamic analysis. Energy Conversion Management, 48(3):942-953. 


[5] An, Y.J., Kim, B.J., Shin, B.R., 2010. Numerical analysis of 3-D flow through LNG marine control valves for their advanced design. Journal of Mechanical Science and Technology, 22(10):1998-2005. 


[6] Beune, A., Kuerten, J.G.M., Schmidt, J., 2011. Numerical calculation and experimental validation of safety valve flows at pressures up to 600 bar. AIChE Journal, 57(1):3285-3298. 


[7] Casoli, P., Vacca, A., Berta, G.L., 2010. A numerical procedure for predicting the performance of high pressure homogenizing valves. Simulation Modelling Practice and Theory, 18(2):125-138. 


[8] Chattopadhyay, H., Kundu, A., Saha, B.K., Gangopadhyay, T., 2012. Analysis of flow structure inside a spool type pressure regulating valve. Energy Conversion and Management, 53(1):196-204. 


[9] Chen, P.L., Yu, X.L., Liu, L., 2009. Simulation and experimental study of electro-pneumatic valve used in air-powered engine. Journal of Zhejiang University-SCIENCE A, 10(3):377-383. 


[10] Cho, T.D., Yang, S.M., Lee, H.Y., Ko, S.H., 2007. A study on the force balance of an unbalanced globe. Journal of Mechanical Science and Technology, 21(5):814-820. 


[11] Fester, V.G., Kazadi, D.M., Mbiya, B.M., Slatter, P.T., 2007. Loss coefficients for flow of newtonian and non-newtonian fluids through diaphragm valves. Chemical Engineering Research and Design, 85(9):1314-1324. 


[12] Gao, H., Fu, X., Yang, H.Y., Tsukiji, T., 2002. Numerical investigation of cavitating flow behind the cone of a poppet valve in water hydraulic system. Journal of Zhejiang University-SCIENCE A, 3(4):395-400. 


[13] Kerh, T., Lee, J.J., Wellford, L.C., 1997. Transient fluid-structure interaction in a control valve. Journal of Fluids Engineering, 199(2):354-359. 


[14] Kim, S.W., Kim, J.H., Choi, Y.D., 2007. Flow Characteristics of Butterfly Valve by PIV and CFD. , Proceedings of the Fifth International Conference on Fluid Mechanics, Shanghai, China, 463-466. :463-466. 


[15] Mokhtanadeh-Dehghan, M.R., Ladommatos, N., Brennan, T.J., 1997. Finite element analysis of flow in a hydraulic pressure valve. Applied Mathematical Modelling, 21(7):437-445. 


[16] Palau-Salvador, G., Gonzalez-Altozano, P., Arviza-Valverde, J., 2008. Three-dimensional modeling and geometrical influence on the hydraulic performance of a control valve. Journal of Fluids Engineering, 13001):011102


[17] Prescott, S.L., Ulanicki, B., 2003. Dynamic modeling of pressure reducing valves. Journal of Hydraulic Engineering, 129(10):804-812. 


[18] Shin, C.H., Ha, J.M., Lee, C.G., 2008. Transient pressure characteristics in a pressure regulating system by using 1-D analytic valve modeling. Journal of Mechanical Science and Technology, 22(2):374-381. 


[19] Xu, H., Guang, Z.M., Qi, Y.Y., 2011. Hydrodynamic characterization and optimization of Contra-push check valve by numerical simulation. Annals of Nuclear Energy, 38(6):1427-1437. 


[20] Yang, Q., Zhang, Z., Liu, M., Hu, J., 2011. Numerical simulation of fluid flow inside the valve. Procedia Engineering, 23:543-550. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE