Full Text:   <4136>

Summary:  <2027>

CLC number: TU528.01

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2012-12-22

Cited: 6

Clicked: 7549

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.1 P.71-78

http://doi.org/10.1631/jzus.A1200187


Chloide content and pH value in the pore solution of concrete under carbonation*


Author(s):  Xiao-mei Wan1, Folker H. Wittmann2, Tie-jun Zhao1, Hong Fan1

Affiliation(s):  1. School of Civil Engineering, Qingdao Technological University, Qingdao 266033, China; more

Corresponding email(s):   wanxiaomeiqj@126.com

Key Words:  Chloride, Pore solution, Carbonation, pH value


Share this article to: More <<< Previous Article|

Xiao-mei Wan, Folker H. Wittmann, Tie-jun Zhao, Hong Fan. Chloride content and pH value in the pore solution of concrete under carbonation[J]. Journal of Zhejiang University Science A, 2013, 14(1): 71-78.

@article{title="Chloride content and pH value in the pore solution of concrete under carbonation",
author="Xiao-mei Wan, Folker H. Wittmann, Tie-jun Zhao, Hong Fan",
journal="Journal of Zhejiang University Science A",
volume="14",
number="1",
pages="71-78",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200187"
}

%0 Journal Article
%T Chloride content and pH value in the pore solution of concrete under carbonation
%A Xiao-mei Wan
%A Folker H. Wittmann
%A Tie-jun Zhao
%A Hong Fan
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 1
%P 71-78
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200187

TY - JOUR
T1 - Chloride content and pH value in the pore solution of concrete under carbonation
A1 - Xiao-mei Wan
A1 - Folker H. Wittmann
A1 - Tie-jun Zhao
A1 - Hong Fan
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 1
SP - 71
EP - 78
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200187


Abstract: 
chloride content and the pH value of the pore solution in the neighborhood of steel reinforcement are decisive parameters for initiation and rate of corrosion. The pore solution of cement mortar and hardened cement paste has been expressed from the pore space by high pressure in the investigation. The influence of the water-cement ratio, age, and addition of chloride to the fresh mix on chloride content in the pore solution has been determined by ion chromatography. At the same time the pH value of the pore solution has been determined. The dissolved chloride content decreases with increase in the water-cement ratio. The amount of bound chloride increases with time, but it decreases with decreasing content of dissolved chloride in the pore solution. A significant influence of carbonation on the dissolved chloride content of the pore solution has been observed. With complete carbonation, the dissolved chloride content in cement mortar and hardened cement paste increases by a factor between 2 and 12. The bound chloride decreases by 27%–54%. As expected, the pH value decreases from around 13.2 to as low as 8.0 due to carbonation. It can be concluded that carbonation not only lowers the pH value but liberates bound chloride. This is one obvious reason why the combined action of chloride penetration and carbonation accelerates steel corrosion and shortens the service life of reinforced concrete structures.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Anstice, D.J., Page, C.L., Page, M.M., 2005. The pore solution phase of carbonated cement pastes. Cement and Concrete Research, 35(2):377-383. 


[2] Arya, C., Newman, J.B., 1990. An assessment of four methods of determining the free chloride content of concrete. Materials and Structures, 23(5):319-330. 


[3] Balonis, M., Lothenbach, B., Saout, G., Glasser, F.P., 2010. Impact of chloride on the mineralogy of hydrated Portland cement systems. Cement and Concrete Research, 40(7):1009-1022. 


[4] Barneyback, R.S., Diamond, S., 1981. Expression and analysis of pore fluids from hardened cement paste and mortars. Cement and Concrete Research, 11(2):279-285. 


[5] Bermudez, M.A., Alaejos, P., 2010. Models for chloride diffusion coefficients of concrete in tidal zone. ACI Materials Journal, 107(1):3-11. 

[6] Conciatori, D., Sadouki, H., Brhwiler, E., 2008. Capillary suction and diffusion model for chloride ingress into concrete. Cement and Concrete Research, 38(12):1401-1408. 


[7] Conciatori, D., Laferrire, F., Brhwiler, E., 2010. Comprehensive modeling of chloride ion and water ingress into concrete considering thermal and carbonation state for real climate. Cement and Concrete Research, 40(1):109-118. 


[8] Duchesne, J., Berube, M.A., 1994. Evaluation of the validity of the pore solution expression method from hardened cement paste and mortars. Cement and Concrete Research, 24(3):456-462. 


[9] Geiker, M., Nielsen, E.P., Herfort, D., 2007. Prediction of chloride ingress and binding in cement paste. Materials and Structures, 40(4):405-417. 


[10] Goñi, S., Guerrero, A., 2003. Accelerated carbonation of Friedel’s salt in calcium aluminate cement paste. Cement and Concrete Research, 33(1):21-26. 


[11] Haque, M.N., Kayyali, O.A., 1995. Free and water soluble chloride in concrete. Cement and Concrete Research, 25(3):531-542. 


[12] Hashimoto, K., Yokota, H., Sato, Y., 2012. Chloride Ion Binding Behavior of Deicing Chlorides under Freeze-Thaw Environment. , RILEM Proceedings PRO 83: Microstructural-Related Durability of Cementitious Composites, :

[13] Lloyd, R.R., Provis, J.L., Deventer, J.S.J., 2010. Pore solution composition and alkali diffusion in inorganic polymer cement. Cement and Concrete Research, 40(9):1386-1392. 


[14] Matschei, T., Lothenbach, B., Glasser, F.P., 2007. The AFm phase in Portland cement. Cement and Concrete Research, 37(2):118-130. 


[15] Mesbah, A., Francois, M., Cau-dit-Coumes, C., Frizon, F., Filinchuk, Y., Leroux, F., Ravaux, J., Renaudin, G., 2011. Crystal structure of Kuzel’s salt 3CaO·Al2O3·1/2CaSO4· 1/2CaCl2·11H2O determined by synchrotron powder diffraction. Cement and Concrete Research, 41(5):504-509. 


[16] Nagao, K., Ueda, T., 2003. Application of desalination to concrete admixing fly ash or blast-furnace slag. International Journal of Modern Physics B, 17(8-9):1452-1457. 


[17] Pack, S., Jung, M., Song, H., 2010. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment. Cement and Concrete Research, 40(2):302-312. 


[18] Page, C.L., Vennesland, O., 1991. Pore solution composition and chloride binding capacity of silica-fume cement pastes. Materials and Structures, 16(1):19-25. 


[19] Scovazzo, P., Todd, P., 2001. Modeling disjoining pressures in submicrometer liquid-filled cylindrical geometries. Journal of Colloid and Interface Science, 238(2):230-237. 


[20] Tang, L., 2008. Engineering expression of the ClinConc model for prediction of free and total chloride ingress in submerged marine concrete. Cement and Concrete Research, 38(8-9):1092-1097. 


[21] Theissing, E.M., Hest-Wardenier, P., Wind, G., 1978. The combining of sodium chloride and calcium chloride by a number of different hardened cement pastes. Cement and Concrete Research, 8(6):683-692. 


[22] Wittmann, F.H., Beltzung, F., Zhao, T., 2009. Shrinkage mechanisms, crack formation and service life of reinforced concrete structures. International Journal of Structural Engineering, 1(1):13-28. 


[23] Yoon, I., Saeki, T., Park, S., 2012. Chloride Ion Binding Behavior of Deicing Chlorides under Freeze-Thaw Environment. , RILEM Proceedings PRO 83: Microstructural-Related Durability of Cementitious Composites, :


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE