Full Text:   <3346>

CLC number: P333

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-01-23

Cited: 1

Clicked: 7625

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.2 P.110-119

http://doi.org/10.1631/jzus.A1200231


Modeling pollutant transport in overland flow over non-planar and non-homogenous infiltrating surfaces*


Author(s):  Zhi-guo He1, Gokmen Tayfur2, Qi-hua Ran3, Hao-xuan Weng1

Affiliation(s):  1. Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   ranqihua@zju.edu.cn

Key Words:  Diffusion wave, Variation, Topography, Roughness, Infiltration, Pollutant, Modeling, Overland flow


Zhi-guo He, Gokmen Tayfur, Qi-hua Ran, Hao-xuan Weng. Modeling pollutant transport in overland flow over non-planar and non-homogenous infiltrating surfaces[J]. Journal of Zhejiang University Science A, 2013, 14(2): 110-119.

@article{title="Modeling pollutant transport in overland flow over non-planar and non-homogenous infiltrating surfaces",
author="Zhi-guo He, Gokmen Tayfur, Qi-hua Ran, Hao-xuan Weng",
journal="Journal of Zhejiang University Science A",
volume="14",
number="2",
pages="110-119",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200231"
}

%0 Journal Article
%T Modeling pollutant transport in overland flow over non-planar and non-homogenous infiltrating surfaces
%A Zhi-guo He
%A Gokmen Tayfur
%A Qi-hua Ran
%A Hao-xuan Weng
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 2
%P 110-119
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200231

TY - JOUR
T1 - Modeling pollutant transport in overland flow over non-planar and non-homogenous infiltrating surfaces
A1 - Zhi-guo He
A1 - Gokmen Tayfur
A1 - Qi-hua Ran
A1 - Hao-xuan Weng
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 2
SP - 110
EP - 119
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200231


Abstract: 
pollutant transport in overland flow over surfaces with spatially varying microtopography, roughness, and infiltration was investigated using the diffusion wave equation and transport rate-based equation. The finite volume method in space and an implicit backward difference scheme in time were employed in the numerical solution of the 2D governing equations. The developed model was first tested against an analytical solution and an experimental study involving overland flow and the associated pollutant transport, subsequently a series of numerical tests were carried out. Non-point source pollution was investigated under spatially varying microtopography, roughness, and infiltration. The simulation results showed that microtopography and roughness were the dominant factors causing significant spatial variations in solute concentration. When the spatially varying microtopography was replaced by a smooth surface, the result was an overestimation of the solute rate at the outlet of the upland. On the other hand, when the spatially varying roughness was replaced by the average roughness and spatially varying infiltration rate by the average infiltration rate, the pollutant discharge at the outlet of the upland was not significantly affected. The numerical results further showed that one cannot ignore the spatial variations of slope and roughness when investigating the local pollutant concentration distribution.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Abbasi, F., Simunek, J., Van Genuchten, M.T., Feyen, J., Adamsen, F.J., Hunsaker, D.J., Strelkoff, T.S., Shouse, P., 2003. Overland water flow and solute transport: model development and filed data analysis. Journal of Irrigation and Drainage Engineering, 129(2):71-81. 


[2] Abbott, M.B., Refsgaard, J.C., 1996.  Distributed Hydrological Modeling. Kluwer Acedemic Publisher,Dordrecht, The Netherland :

[3] Akan, A.O., Yen, B.C., 1981. Mathematical model of shallow water flow over porous media. Journal of Hydraulic Division, 107(4):479-494. 

[4] de Lima, J.L.M.P., Singh, V.P., de Lima, M.I.P., 2003. The influence of storm movement on water erosion: storm direction and velocity effects. Catena, 52(1):39-56. 


[5] Deng, Z.Q., Lima, J.L.M.P., Singh, V.P., 2005. Fractional kinetic model for first flush of stormwater pollutants. Journal of Environmental Engineering, 131(2):232-241. 


[6] Deng, Z.Q., Lima, J.L.M.P., Singh, V.P., 2005. Transport rate-based model for overland flow and solute transport: parameter estimation and process simulation. Journal of Hydrology, 315(1-4):220-235. 


[7] Garcia-Navarro, P., Playan, E., 2000. Solute transport modeling in overland flow applied to fertigation. Journal of Irrigation and Drainage Engineering, 126(1):33-40. 


[8] Govindaraju, R.S., 1996. Modeling overland flow contamination by chemicals mixed in shallow soil horizons under variable source area hydrology. Water Resources Research, 32(3):753-758. 


[9] He, Z., Wu, W., Wang, S.S.Y., 2009. An integrated 2D surface and 3D subsurface contaminant transport model considering soil erosion and sorption. Journal of Hydraulic Engineering, 135(12):1028-1040. 


[10] Helmers, M.J., Eisenhauer, D.E., 2006. Overland flow modeling in a vegetative filter considering non-planar topography and spatial variability of soil hydraulic properties and vegetation density. Journal of Hydrology, 328(1-2):267-282. 


[11] Helmers, M.J., Eisenhauer, D.E., Franti, T.G., Dosskey, M.G., 2005. Modeling sediment trapping in a vegetative filter accounting for converging overland flow. Transactions of the ASAE, 48(2):541-555. 

[12] Monaghan, R.M., Smith, L.C., 2012. Contaminant losses in overland flow from dairy farm laneways in southern New Zealand. Agriculture, Ecosystems & Environment, 159:170-175. 


[13] Ouyang, W., Guo, B., Hao, F., Huang, H., Li, J., Gong, Y., 2012. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing. Journal of Environmental Management, 113:467-473. 


[14] Payten, R.L., Sanders, G., 1990. Mixing in overland flow during rainfall. Journal of Environmental Engineering, 116(4):764-784. 


[15] Rivlin, J., Wallach, R., 1995. An analytical solution for the lateral transport of dissolved chemicals in overland flow. Water Resources Research, 31(4):1031-1040. 


[16] Singh, V.P., 2002. Kinematic wave solution for pollutant transport over an infiltrating plane with finite-period mixing and mixing zone. Hydrological Processes, 16(12):2441-2477. 


[17] Snyder, I.K., Woolhiser, D.D., 1985. Effects of infiltration on chemical transport onto overland flow. Transactions of. ASAE, 28:1450-1457. 

[18] Stone, H.L., 1968. Iterative solution of implicit approximation of multidimensional partial differential equations. SIAM Journal of Numerical Analysis, 5:530-558. 

[19] Tayfur, G., Singh, V.P., 2004. Numerical model for sediment transport over non-planar, non-homogeneous surfaces. Journal of Hydrologic Engineering, 9(1):35-41. 


[20] Tayfur, G., Kavvas, M.L., Govindaraju, R.S., Storm, D.E., 1993. Applicability of St. Venant equations for two dimensional overland flows over rough infiltrating surfaces. Journal of Hydraulic Engineering, 119(1):51-63. 


[21] VanderKwaak, J.E., 1999.  Numerical Simulation of Flow and Chemical Transport in Integrated Surface-Subsurface Hydrologic Systems. PhD Thesis, University of Waterloo,Waterloo, Ont, Canada :

[22] Wallach, R., Van Genuchten, M.T., 1990. A physically based model for predicting solute transfer from soil to rainfall-induced runoff. Water Resources Research, 26(9):2119-2126. 


[23] Wallach, R., Shabtai, R., 1993. Surface runoff contamination by chemicals initially incorporated below the soil surface. Water Resources Research, 29(3):697-704. 


[24] Wallach, R., Jury, W.A., Spencer, W.F., 1988. Transfer of chemicals from soil solution to surface runoff: a diffusion-based soil model. Soil Science Society of America Journal, 52(3):612-618. 


[25] Wallach, R., Jury, W.A., Spencer, W.F., 1989. The concept of convective mass transfer for prediction of surface-runoff pollution by soil surface applied chemicals. Transactions on ASAE, 2(3):906-912. 

[26] Wallach, R., Grigorin, G., Rivlin, J., 2001. A comprehensive mathematical model for transport of soil-dissolved chemicals by overland flows. Journal of Hydrology, 247(1-2):85-99. 


[27] Walton, R.S., Volker, R.E., Bristow, K.L., Smettem, K.R.J., 2000. Experimental examination of solute transport by surface runoff from low-angle slopes. Journal of Hydrology, 233:19-36. 


[28] Yan, M., Kahawita, R., 2000. Modeling the fate of pollutant in overland flow. Water Research, 34(13):3335-3344. 


[29] Yan, M., Kahawita, R., 2007. Simulating the evolution of non-point source pollutants in a shallow water environment. Chemosphere, 67(5):879-885. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE