Full Text:   <11137>

CLC number: X1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-02-22

Cited: 72

Clicked: 23200

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.3 P.155-176

http://doi.org/10.1631/jzus.A1300029


Mathematically modeling fixed-bed adsorption in aqueous systems*


Author(s):  Zhe Xu, Jian-guo Cai, Bing-cai Pan

Affiliation(s):  . State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

Corresponding email(s):   bcpan@nju.edu.cn

Key Words:  Column adsorption, Modeling, Fixed-bed adsorption, Breakthrough curve


Share this article to: More |Next Article >>>

Zhe Xu, Jian-guo Cai, Bing-cai Pan. Mathematically modeling fixed-bed adsorption in aqueous systems[J]. Journal of Zhejiang University Science A, 2013, 14(3): 155-176.

@article{title="Mathematically modeling fixed-bed adsorption in aqueous systems",
author="Zhe Xu, Jian-guo Cai, Bing-cai Pan",
journal="Journal of Zhejiang University Science A",
volume="14",
number="3",
pages="155-176",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300029"
}

%0 Journal Article
%T Mathematically modeling fixed-bed adsorption in aqueous systems
%A Zhe Xu
%A Jian-guo Cai
%A Bing-cai Pan
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 3
%P 155-176
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300029

TY - JOUR
T1 - Mathematically modeling fixed-bed adsorption in aqueous systems
A1 - Zhe Xu
A1 - Jian-guo Cai
A1 - Bing-cai Pan
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 3
SP - 155
EP - 176
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300029


Abstract: 
Adsorption is one of the widely used processes in the chemical industry environmental application. As compared to mathematical models proposed to describe batch adsorption in terms of isotherm and kinetic behavior, insufficient models are available to describe and predict fixed-bed or column adsorption, though the latter one is the main option in practical application. The present review first provides a brief summary on basic concepts and mathematic models to describe the mass transfer and isotherm behavior of batch adsorption, which dominate the column adsorption behavior in nature. Afterwards, the widely used models developed to predict the breakthrough curve, i.e., the general rate models, linear driving force (LDF) model, wave propagation theory model, constant pattern model, Clark model, Thomas model, Bohart-Adams model, Yoon-Nelson model, Wang model, Wolborska model, and modified dose-response model, are briefly introduced from the mechanism and mathematical viewpoint. Their basic characteristics, including the advantages and inherit shortcomings, are also discussed. This review could help those interested in column adsorption to reasonably choose or develop an accurate and convenient model for their study and practical application.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Abu-Lail, L., Bergendahl, J.A., Thompson, R.W., 2012. Mathematical modeling of chloroform adsorption onto fixed-bed columns of highly siliceous granular zeolites. Environmental Progress & Sustainable Energy, 31(4):591-596. 


[2] Abuzaid, N.S., Nakhla, G., 1997. Predictability of the homogeneous surface diffusion model for activated carbon adsorption kinetics; formulation of a new mathematical model. Journal of Environmental Science & Health Part A, 32(7):1945-1961. 

[3] Aksu, Z., Gnen, F., 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochemistry, 39(5):599-613. 


[4] Araneda, C., Basualto, C., Sapag, J., Tapia, C., Cotoras, D., Valenzuela, F., 2011. Uptake of copper (II) ions from acidic aqueous solutions using a continuous column packed with microcapsules containing a β-hydroxyoximic compound. Chemical Engineering Research & Design, 89(12):2761-2769. 


[5] Ayoob, S., Gupta, A., Bhakat, P.B., 2007. Analysis of breakthrough developments and modeling of fixed bed adsorption system for As (V) removal from water by modified calcined bauxite (MCB). Separation and Purification Technology, 52(3):430-438. 


[6] Azizian, S., 2004. Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276(1):47-52. 


[7] Bhakat, P., Gupta, A., Ayoob, S., 2007. Feasibility analysis of As (III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB). Journal of Hazardous Materials, 139(2):286-292. 


[8] Borba, C., Guirardello, R., Silva, E.A., Veit, M.T., Tavares, C.R.G., 2006. Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: Experimental and theoretical breakthrough curves. Biochemical Engineering Journal, 30(2):184-191. 


[9] Brauch, V., Schlunder, E., 1975. The scale-up of activated carbon columns for water purification, based on results from batch tests-II: Theoretical and experimental determination of breakthrough curves in activated carbon columns. Chemical Engineering Science, 30(5-6):539-548. 


[10] Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2):309-319. 


[11] Cheknane, B., Baudu, M., Bouras, O., Zermane, F., 2012. Modeling of basic green 4 dynamic sorption onto granular organo-inorgano pillared clays (GOICs) in column reactor. Chemical Engineering Journal, 209:7-12. 


[12] Chern, J.M., Huang, S.N., 1999. Study of nonlinear wave propagation theory. II. Interference phenomena of single-component dye adsorption waves. Separation Science and Technology, 34(10):1993-2011. 


[13] Chern, J.M., Chien, Y.W., 2002. Adsorption of nitrophenol onto activated carbon: isotherms and breakthrough curves. Water Research, 36(3):647-655. 


[14] Chong, K., Volesky, B., 1995. Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnology and Bioengineering, 47(4):451-460. 


[15] Clark, R.M., 1987. Evaluating the cost and performance of field-scale granular activated carbon systems. Environmental Science & Technology, 21(6):573-580. 


[16] Costa, C., Rodrigues, A., 1985. Design of cyclic fixed-bed adsorption processes. 1. Phenoal adsorption on polymeric adsorbents. AIChE Journal, 31(10):1645-1654. 


[17] Crittenden, J.C., Weber, W.J., 1978. Predictive model for design of fixed-bed adsorbers: Parameter estimation and model development. Journal of the Environmental Engineering Division, 104(2):185-197. 

[18] Crittenden, J.C., Luft, C.P., Hand, D.W., 1985. Prediction of multicomponent adsorption equilibria in background mixtures of unknown composition. Water Research, 19(12):1537-1548. 


[19] Crittenden, J.C., Hutzler, N.J., Geyer, D.G., Oravitz, J.L., Friedman, G., 1986. Model development and parameter sensitivity. Water Resources Research, 22(3):271-284. 


[20] Cussler, E.L., 1976.  Multicomponent Diffusion. Elsevier,Amsterdam :

[21] Do, D., Mayfield, P., 1987. A new simplified model for adsorption in a single particle. AIChE Journal, 33(8):1397-1400. 


[22] Du, X., Yuan, Q., Li, Y., 2008. Mathematical analysis of solanesol adsorption on macroporous resins using the general rate model. Chemical Engineering & Technology, 31(9):1310-1318. 


[23] Du, X., Yuan, Q., Zhao, J., Li, Y., 2007. Comparison of general rate model with a new model—artificial neural network model in describing chromatographic kinetics of solanesol adsorption in packed column by macroporous resins. Journal of Chromatography A, 1145(1-2):165-174. 


[24] Dubinin, M., Radushkevich, L., 1947. Equation of the characteristic curve of activated charcoal. Chemisches Zentralblatt, 1(1):875

[25] Finlayson, B., 2003. Nonlinear Analysis in Chemical Engineering, Ravenna Park Publishing, Inc,:

[26] Foo, K., Hameed, B., 2010. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1):2-10. 


[27] Fournel, L., Mocho, P., Brown, R., le Cloirec, P., 2010. Modeling breakthrough curves of volatile organic compounds on activated carbon fibers. Adsorption, 16(3):147-153. 

[28] Ghasemi, M., Keshtkar, A.R., Dabbagh, R., Jaber Safdari, S., 2011. Biosorption of uranium (VI) from aqueous solutions by Ca-pretreated Cystoseira indicaalga: breakthrough curves studies and modeling. Journal of Hazardous Materials, 189(1-2):141-149. 


[29] Gholami, M., Talaie, M., 2010. Investigation of simplifying assumptions in mathematical modeling of natural gas dehydration using adsorption process and introduction of a new accurate LDF model. Industrial & Engineering Chemistry Research, 49(2):838-846. 


[30] Giles, C., MacEwan, T., Nakhwa, S.N., 1960. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society, (0):3973-3993. 


[31] Glueckauf, E., 1955. Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography. Transactions of the Faraday Society, 51(0):1540-1551. 


[32] Gnielinski, V., 1978. Equations for calculation of heat and mass transfer in perfused ballasting of spherical particles at medium and high Peclet numbers. Verfahrenstechnik, 12(6):363-367. 

[33] Haghseresht, F., Lu, G., 1998. Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy & Fuels, 12(6):1100-1107. 


[34] Hamdaoui, O., 2006. Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns. Journal of Hazardous Materials, 138(2):293-303. 


[35] Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y., Zou, L., 2008. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresource Technology, 99(8):2938-2946. 


[36] Hand, D.W., Loper, S., Ari, M., Crittenden, J.C., 1985. Prediction of multicomponent adsorption equilibria using ideal adsorbed solution theory. Environmental Science & Technology, 19(11):1037-1043. 


[37] Heese, C., Worch, E., 1997. A new user-oriented method for prediction of intraparticle mass transfer coefficients for adsorber modelling. Vom Wasser, (in German),89:373-391. 

[38] Helfferich, F., 1984. Conceptual view of column behavior in multicomponent adsorption or ion-exchange systems. AIChE Symposium Series, 80:1

[39] Helfferich, F.G., 1995. Ion Exchange, Dover Pubns,:

[40] Helfferich, F.G., Klein, G., 1970.  Multicomponent Chromatography: Theory of Interference. M. Dekker,New York :

[41] Helfferich, F.G., Carr, P.W., 1993. Non-linear waves in chromatography: I. Waves, shocks, and shapes. Journal of Chromatography A, 629(2):97-122. 


[42] Helfferich, F.G., Whitley, R.D., 1996. Non-linear waves in chromatography II. Wave interference and coherence in multicomponent systems. Journal of Chromatography A, 734(1):7-47. 


[43] Hutchins, R., 1973. New method simplifies design of activated carbon systems. Chemical Engineering, 80(19):133-138. 

[44] Jain, J.S., Snoeyink, V.L., 1973. Adsorption from bisolute systems on active carbon. Journal (Water Pollution Control Federation), 45(12):2463-2479. 

[45] Jia, Q., Lua, A.C., 2008. Concentration-dependent branched pore kinetic model for aqueous phase adsorption. Chemical Engineering Journal, 136(2-3):227-235. 


[46] Kaczmarski, K., Antos, D., 1996. Fast finite difference method for solving multicomponent adsorption-chromatography models. Computers & Chemical Engineering, 20(11):1271-1276. 


[47] Kananpanah, S., Dizadji, N., Abolghasemi, H., Salamatinia, B., 2009. Developing a new model to predict mass transfer coefficient of salicylic acid adsorption onto IRA-93: Experimental and modeling. Korean Journal of Chemical Engineering, 26(5):1208-1212. 


[48] Kataoka, T., Yoshida, H., Ueyama, K., 1972. Mass transfer in laminar region between liquid and packing material surface in the packed bed. Journal of Chemical Engineering of Japan, 5(2):132-136. 


[49] Ko, D.C.K., Porter, J.F., McKay, G., 2000. Optimised correlations for the fixed-bed adsorption of metal ions on bone char. Chemical Engineering Science, 55(23):5819-5829. 


[50] Ko, D.C.K., Porter, J.F., McKay, G., 2001. Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Research, 35(16):3876-3886. 


[51] Ko, D.C.K., Porter, J.F., McKay, G., 2002. A branched pore model analysis for the adsorption of acid dyes on activated carbon. Adsorption, 8(3):171-188. 


[52] Ko, D.C.K., Porter, J.F., McKay, G., 2003. Mass transport model for the fixed bed sorption of metal ions on bone char. Industrial & Engineering Chemistry Research, 42(14):3458-3469. 


[53] Ko, D.C.K., Porter, J.F., McKay, G., 2005. Application of the concentration-dependent surface diffusion model on the multicomponent fixed-bed adsorption systems. Chemical Engineering Science, 60(20):5472-5479. 


[54] Langmuir, I., 1916. The constitution and fundmental properties of solids and liquids. part I. Solids. Journal of the American Chemical Society, 38(11):2221-2295. 


[55] Lee, V.K.C., McKay, G., 2004. Comparison of solutions for the homogeneous surface diffusion model applied to adsorption systems. Chemical Engineering Journal, 98(3):255-264. 


[56] Lee, V.K.C., Porter, J.F., McKay, G., Mathews, A.P., 2005. Application of solid-phase concentration-dependent HSDM to the acid dye adsorption system. AIChE Journal, 51(1):323-332. 


[57] Lin, S.H., Wang, C.S., Chang, C.H., 2002. Removal of methyl tert-butyl ether from contaminated water by macro-reticular resin. Industrial & Engineering Chemistry Research, 41(16):4116-4121. 


[58] Liu, B., Zeng, L., Ren, Q., 2010. Simulation of levulinic acid adsorption in packed beds using parallel pore/surface diffusion model. Chemical Engineering & Technology, 33(7):1146-1152. 


[59] Lo, I., Alok, P.A., 1996. Computer simulation of activated carbon adsorption for multi-component systems. Environment International, 22(2):239-252. 


[60] Maji, S.K., Pal, A., Pal, T., Adak, A., 2007. Modeling and fixed bed column adsorption of As (III) on laterite soil. Separation and Purification Technology, 56(3):284-290. 


[61] Malek, A., Farooq, S., 1996. Comparison of isotherm models for hydrocarbon adsorption on activated carbon. AIChE Journal, 42(11):3191-3201. 


[62] Mathews, A., Weber, W.J.J., 1977. Effects of external mass transfer and intraparticle diffusion on adsorption rates in slurry reactors. AIChE Symposium Series, 73:91-94. 

[63] McKay, G., 1979. Basic dye adsorption on activated carbon. Water, Air, & Soil Pollution, 12(3):307-317. 


[64] McKay, G., 1984. Analytical solution using a pore diffusion model for a pseudoirreversible isotherm for the adsorption of basic dye on silica. AIChE Journal, 30(4):692-697. 


[65] McKay, G., 2001. Solution to the homogeneous surface diffusion model for batch adsorption systems using orthogonal collocation. Chemical Engineering Journal, 81(1-3):213-221. 


[66] McKay, G., Al-Duri, B., 1988. Prediction of bisolute adsorption isotherms using single-component data for dye adsorption onto carbon. Chemical Engineering Science, 43(5):1133-1142. 


[67] Medved, I., Cerny, R., 2011. Surface diffusion in porous media: A critical review. Microporous and Mesoporous Materials, 142(2-3):405-422. 

[68] Meng, M.J., Wang, Z.P., Ma, L., Zhang, M., Wang, J., Dai, X.H., Yan, Y.S., 2012. Selective adsorption of methylparaben by submicrosized molecularly imprinted polymer: batch and dynamic flow mode studies. Industrial & Engineering Chemistry Research, 51(45):14915-14924. 


[69] Murillo, R., Garcıa, T., Ayln, E., Calln, M.S., Navarro, M.V., Lpez, J.M., Mastral, A.M., 2004. Adsorption of phenanthrene on activated carbons: Breakthrough curve modeling. Carbon, 42(10):2009-2017. 


[70] Myers, A., Prausnitz, J.M., 1965. Thermodynamics of mixed-gas adsorption. AIChE Journal, 11(1):121-127. 


[71] Nakao, S., Suzuki, M., 1983. Mass transfer coefficient in cyclic adsorption and desorption. Journal of Chemical Engineering of Japan, 16(2):114-119. 


[72] Neretnieks, I., 1976. Adsorption in finite bath and countercurrent flow with systems having a concentration dependant coefficient of diffusion. Chemical Engineering Science, 31(6):465-471. 


[73] Nwabanne, J.T., Igbokwe, P.K., 2012. Kinetic modeling of heavy metals adsorption on fixed bed column. International Journal of Environmental Research, 6(4):945-952. 

[74] Ohashi, H., Sugawara, T., Kikuchi, K.I., Konno, H., 1981. Correlation of liquid-side mass transfer coefficient for single particles and fixed beds. Journal of Chemical Engineering of Japan, 14(6):433-438. 


[75] Pan, B.C., Meng, F.W., Chen, X.Q., Pan, B.J., Li, X.T., Zhang, W.M., Zhang, X., Chen, J.L., Zhang, Q.X., Sun, Y., 2005. Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent. Journal of Hazardous Materials, 124(1-3):74-80. 


[76] Pearl, R., 1977. The Biology of Population Growth, Ayer Co. Pub,:

[77] Peel, R.G., Benedek, A., Crowe, C.M., 1981. A branched pore kinetic model for activated carbon adsorption. AIChE Journal, 27(1):26-32. 


[78] Plazinski, W., Rudzinski, W., Plazinska, A., 2009. Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Advances in Colloid and Interface Science, 152(1-2):2-13. 


[79] Purtolas, B., Lpez, M.R., Navarro, M.V., Lpez, J.M., Murillo, R., Garca, T., Mastra, A.M., 2010. Modelling the breakthrough curves obtained from the adsorption of propene onto microporous inorganic solids. Adsorption Science & Technology, 28(8):761-775. 


[80] Quek, S., Al-Duri, B., 2007. Application of film-pore diffusion model for the adsorption of metal ions on coir in a fixed-bed column. Chemical Engineering and Processing Process Intensification, 46(5):477-485. 


[81] Radke, C., Prausnitz, J., 1972. Thermodynamics of multisolute adsorption from dilute liquid solutions. AIChE Journal, 18(4):761-768. 


[82] Roberts, P.V., Cornel, P., Summers, R.S., 1985. External mass-transfer rate in fixed-bed adsorption. Journal of Environmental Engineering, 111(6):891-905. 


[83] Ruthven, D.M., 1984. Principles of Adsorption and Adsorption Processes, Wiley-Interscience,:

[84] Scott, D., Dullien, F., 1962. Diffusion of ideal gases in capillaries and porous solids. AIChE Journal, 8(1):113-117. 


[85] Seidel-Morgenstern, A., 2004. Experimental determination of single solute and competitive adsorption isotherms. Journal of Chromatography A, 1037(1-2):255-272. 


[86] Senthilkumar, R., Vijayaraghavan, K., Thilakavathi, M., Iyer, P.V.R., Velan, M., 2006. Seaweeds for the remediation of wastewaters contaminated with zinc (II) ions. Journal of Hazardous Materials, 136(3):791-799. 


[87] Silva, E.A., Vaz, L.G.L., Veit, M.T., Fagundes-Klen, M.R., Cossich, E.S., Tavares, C.R.G., Cardozo-Filho, L., Guirardello, R., 2010. Biosorption of chromium (III) and copper (II) ions onto marine Alga Sargassum sp. in a fixed-bed column. Adsorption Science & Technology, 28(5):449-464. 


[88] Sips, R., 1948. Combined form of Langmuir and Freundlich equations. The Journal of Chemical Physics, 16(5):490-495. 


[89] Sperlich, A., Werner, A., Genz, A., Amy, G., Worch, E., Jekel, M., 2005. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches. Water Research, 39(6):1190-1198. 


[90] Srivastava, V., Prasad, B., Mishra, I.M., Mall, I.D., Swamy, M.M., 2008. Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed. Industrial & Engineering Chemistry Research, 47(5):1603-1613. 


[91] Szukiewicz, M.K., 2000. New approximate model for diffusion and reaction in a porous catalyst. AIChE Journal, 46(3):661-665. 


[92] Szukiewicz, M.K., 2002. An approximate model for diffusion and reaction in a porous pellet. Chemical Engineering Science, 57(8):1451-1457. 


[93] Tan, A.Y., Prasher, B.D., Guin, J.A., 1975. Mass transfer in nonuniform packing. AIChE Journal, 21(2):396-397. 


[94] Temkin, M., Pyzhev, V., 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochimica URSS, 12:327-356. 

[95] Tien, C., 1994. Adsorption Calculations and Modeling, Butterworth-Heinemann Boston,:

[96] Toth, J., 1971. State equations of the solid-gas interface layers. Acta Chimica Academiae Scientiarum Hungaricae, 69(3):311-328. 

[97] Traylor, S.J., Xu, X., Lenhoff, A.M., 2011. Shrinking core modeling of binary chromatographic breakthrough. Journal of Chromatography A, 1218(16):2222-2231. 


[98] Wakao, N., Funazkri, T., 1978. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of Sherwood numbers. Chemical Engineering Science, 33(10):1375-1384. 


[99] Wang, Y.H., Lin, S.H., Juang, R.S., 2003. Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. Journal of Hazardous Materials, 102(2-3):291-302. 


[100] Warchoł, J., Petrus, R., 2006. Modeling of heavy metal removal dynamics in clinoptilolite packed beds. Microporous and Mesoporous Materials, 93(1-3):29-39. 


[101] Weber, W., Smith, E., 1987. Simulation and design models for adsorption processes. Environmental Science and Technology, 21(11):1040-1050. 


[102] Wilke, C., Chang, P., 1955. Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1(2):264-270. 


[103] Williamson, J., Bazaire, K., Geankoplis, C.J., 1963. Liquid-phase mass transfer at low Reynolds numbers. Industrial & Engineering Chemistry Fundamentals, 2(2):126-129. 


[104] Wilson, E., Geankoplis, C., 1966. Liquid mass transfer at very low Reynolds numbers in packed beds. Industrial & Engineering Chemistry Fundamentals, 5(1):9-14. 


[105] Wolborska, A., 1989. Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Research, 23(1):85-91. 


[106] Wolborska, A., 1989. Determination of mass transfer coefficient adsorption in a fixed bed. Inzynieria Chemiczna I Procesowa, 4:545-556. 

[107] Wolborska, A., Pustelnik, P., 1996. A simplified method for determination of the break-through time of an adsorbent layer. Water Research, 30(11):2643-2650. 


[108] Worch, E., 1993. Eine neue gleichung zur berechnung von diffusionskoeffizienten gelöster stoffe. Vom Wasser, (in German),81:289-297. 

[109] Worch, E., 2008. Fixed-bed adsorption in drinking water treatment: a critical review on models and parameter estimation. Journal of Water Supply Research and TechnologyAQUA, 57(3):171-183. 


[110] Xue, W.B., Yi, A.H., Zhang, Z.Q., Tang, C.L., Zhang, X.C., Gao, J.M., 2009. A new competitive adsorption isothermal model of heavy metals in soils. Pedosphere, 19(2):251-257. 


[111] Yan, G., Viraraghavan, T., Chen, M., 2001. A new model for heavy metal removal in a biosorption column. Adsorption Science & Technology, 19(1):25-43. 


[112] Yang, X.Y., Al-Duri, B., 2001. Application of branched pore diffusion model in the adsorption of reactive dyes on activated carbon. Chemical Engineering Journal, 83(1):15-23. 


[113] Yao, C., Tien, C., 1993. Approximations of uptake rate of spherical adsorbent pellets and their application to batch adsorption calculations. Chemical Engineering Science, 48(1):187-198. 


[114] Yi, H.H., Deng, H., Tang, X.L., Yu, Q.F., Zhou, X., Liu, H.Y., 2012. Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA. Journal of Hazardous Materials, 203-204:111-117. 


[115] Yoon, Y.H., James, H.N., 1984. Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. The American Industrial Hygiene Association Journal, 45(8):509-516. 


[116] Yun, J.X., Yao, S.J., Lin, D.Q., Lu, M.H., Zhao, W.T., 2004. Modeling axial distributions of adsorbent particle size and local voidage in expanded bed. Chemical Engineering Science, 59(2):449-457. 


[117] Zhang, R., Ritter, J.A., 1997. New approximate model for nonlinear adsorption and diffusion in a single particle. Chemical Engineering Science, 52(18):3161-3172. 


[118] Zhao, Y., Shen, Y.M., Bai, L., Ni, S.Q., 2012. Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling. Applied Surface Science, 261:708-716. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE