References
[1] Abu-Lail, L., Bergendahl, J.A., Thompson, R.W., 2012. Mathematical modeling of chloroform adsorption onto fixed-bed columns of highly siliceous granular zeolites.
Environmental Progress & Sustainable Energy, 31(4):591-596.
[2] Abuzaid, N.S., Nakhla, G., 1997. Predictability of the homogeneous surface diffusion model for activated carbon adsorption kinetics; formulation of a new mathematical model.
Journal of Environmental Science & Health Part A, 32(7):1945-1961.
[3] Aksu, Z., Gnen, F., 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves.
Process Biochemistry, 39(5):599-613.
[4] Araneda, C., Basualto, C., Sapag, J., Tapia, C., Cotoras, D., Valenzuela, F., 2011. Uptake of copper (II) ions from acidic aqueous solutions using a continuous column packed with microcapsules containing a β-hydroxyoximic compound.
Chemical Engineering Research & Design, 89(12):2761-2769.
[5] Ayoob, S., Gupta, A., Bhakat, P.B., 2007. Analysis of breakthrough developments and modeling of fixed bed adsorption system for As (V) removal from water by modified calcined bauxite (MCB).
Separation and Purification Technology, 52(3):430-438.
[6] Azizian, S., 2004. Kinetic models of sorption: a theoretical analysis.
Journal of Colloid and Interface Science, 276(1):47-52.
[7] Bhakat, P., Gupta, A., Ayoob, S., 2007. Feasibility analysis of As (III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB).
Journal of Hazardous Materials, 139(2):286-292.
[8] Borba, C., Guirardello, R., Silva, E.A., Veit, M.T., Tavares, C.R.G., 2006. Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: Experimental and theoretical breakthrough curves.
Biochemical Engineering Journal, 30(2):184-191.
[9] Brauch, V., Schlunder, E., 1975. The scale-up of activated carbon columns for water purification, based on results from batch tests-II: Theoretical and experimental determination of breakthrough curves in activated carbon columns.
Chemical Engineering Science, 30(5-6):539-548.
[10] Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multimolecular layers.
Journal of the American Chemical Society, 60(2):309-319.
[11] Cheknane, B., Baudu, M., Bouras, O., Zermane, F., 2012. Modeling of basic green 4 dynamic sorption onto granular organo-inorgano pillared clays (GOICs) in column reactor.
Chemical Engineering Journal, 209:7-12.
[12] Chern, J.M., Huang, S.N., 1999. Study of nonlinear wave propagation theory. II. Interference phenomena of single-component dye adsorption waves.
Separation Science and Technology, 34(10):1993-2011.
[13] Chern, J.M., Chien, Y.W., 2002. Adsorption of nitrophenol onto activated carbon: isotherms and breakthrough curves.
Water Research, 36(3):647-655.
[14] Chong, K., Volesky, B., 1995. Description of two-metal biosorption equilibria by Langmuir-type models.
Biotechnology and Bioengineering, 47(4):451-460.
[15] Clark, R.M., 1987. Evaluating the cost and performance of field-scale granular activated carbon systems.
Environmental Science & Technology, 21(6):573-580.
[16] Costa, C., Rodrigues, A., 1985. Design of cyclic fixed-bed adsorption processes. 1. Phenoal adsorption on polymeric adsorbents.
AIChE Journal, 31(10):1645-1654.
[17] Crittenden, J.C., Weber, W.J., 1978. Predictive model for design of fixed-bed adsorbers: Parameter estimation and model development.
Journal of the Environmental Engineering Division, 104(2):185-197.
[18] Crittenden, J.C., Luft, C.P., Hand, D.W., 1985. Prediction of multicomponent adsorption equilibria in background mixtures of unknown composition.
Water Research, 19(12):1537-1548.
[19] Crittenden, J.C., Hutzler, N.J., Geyer, D.G., Oravitz, J.L., Friedman, G., 1986. Model development and parameter sensitivity.
Water Resources Research, 22(3):271-284.
[20] Cussler, E.L., 1976. Multicomponent Diffusion. Elsevier,Amsterdam :
[21] Do, D., Mayfield, P., 1987. A new simplified model for adsorption in a single particle.
AIChE Journal, 33(8):1397-1400.
[22] Du, X., Yuan, Q., Li, Y., 2008. Mathematical analysis of solanesol adsorption on macroporous resins using the general rate model.
Chemical Engineering & Technology, 31(9):1310-1318.
[23] Du, X., Yuan, Q., Zhao, J., Li, Y., 2007. Comparison of general rate model with a new model—artificial neural network model in describing chromatographic kinetics of solanesol adsorption in packed column by macroporous resins.
Journal of Chromatography A, 1145(1-2):165-174.
[24] Dubinin, M., Radushkevich, L., 1947. Equation of the characteristic curve of activated charcoal.
Chemisches Zentralblatt, 1(1):875
[25] Finlayson, B., 2003.
Nonlinear Analysis in Chemical Engineering, Ravenna Park Publishing, Inc,:
[26] Foo, K., Hameed, B., 2010. Insights into the modeling of adsorption isotherm systems.
Chemical Engineering Journal, 156(1):2-10.
[27] Fournel, L., Mocho, P., Brown, R., le Cloirec, P., 2010. Modeling breakthrough curves of volatile organic compounds on activated carbon fibers.
Adsorption, 16(3):147-153.
[28] Ghasemi, M., Keshtkar, A.R., Dabbagh, R., Jaber Safdari, S., 2011. Biosorption of uranium (VI) from aqueous solutions by Ca-pretreated Cystoseira indicaalga: breakthrough curves studies and modeling.
Journal of Hazardous Materials, 189(1-2):141-149.
[29] Gholami, M., Talaie, M., 2010. Investigation of simplifying assumptions in mathematical modeling of natural gas dehydration using adsorption process and introduction of a new accurate LDF model.
Industrial & Engineering Chemistry Research, 49(2):838-846.
[30] Giles, C., MacEwan, T., Nakhwa, S.N., 1960. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids.
Journal of the Chemical Society, (0):3973-3993.
[31] Glueckauf, E., 1955. Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography.
Transactions of the Faraday Society, 51(0):1540-1551.
[32] Gnielinski, V., 1978. Equations for calculation of heat and mass transfer in perfused ballasting of spherical particles at medium and high Peclet numbers.
Verfahrenstechnik, 12(6):363-367.
[33] Haghseresht, F., Lu, G., 1998. Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents.
Energy & Fuels, 12(6):1100-1107.
[34] Hamdaoui, O., 2006. Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns.
Journal of Hazardous Materials, 138(2):293-303.
[35] Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y., Zou, L., 2008. Use of rice husk for the adsorption of congo red from aqueous solution in column mode.
Bioresource Technology, 99(8):2938-2946.
[36] Hand, D.W., Loper, S., Ari, M., Crittenden, J.C., 1985. Prediction of multicomponent adsorption equilibria using ideal adsorbed solution theory.
Environmental Science & Technology, 19(11):1037-1043.
[37] Heese, C., Worch, E., 1997. A new user-oriented method for prediction of intraparticle mass transfer coefficients for adsorber modelling.
Vom Wasser, (in German),89:373-391.
[38] Helfferich, F., 1984. Conceptual view of column behavior in multicomponent adsorption or ion-exchange systems.
AIChE Symposium Series, 80:1
[39] Helfferich, F.G., 1995.
Ion Exchange, Dover Pubns,:
[40] Helfferich, F.G., Klein, G., 1970. Multicomponent Chromatography: Theory of Interference. M. Dekker,New York :
[41] Helfferich, F.G., Carr, P.W., 1993. Non-linear waves in chromatography: I. Waves, shocks, and shapes.
Journal of Chromatography A, 629(2):97-122.
[42] Helfferich, F.G., Whitley, R.D., 1996. Non-linear waves in chromatography II. Wave interference and coherence in multicomponent systems.
Journal of Chromatography A, 734(1):7-47.
[43] Hutchins, R., 1973. New method simplifies design of activated carbon systems.
Chemical Engineering, 80(19):133-138.
[44] Jain, J.S., Snoeyink, V.L., 1973. Adsorption from bisolute systems on active carbon.
Journal (Water Pollution Control Federation), 45(12):2463-2479.
[45] Jia, Q., Lua, A.C., 2008. Concentration-dependent branched pore kinetic model for aqueous phase adsorption.
Chemical Engineering Journal, 136(2-3):227-235.
[46] Kaczmarski, K., Antos, D., 1996. Fast finite difference method for solving multicomponent adsorption-chromatography models.
Computers & Chemical Engineering, 20(11):1271-1276.
[47] Kananpanah, S., Dizadji, N., Abolghasemi, H., Salamatinia, B., 2009. Developing a new model to predict mass transfer coefficient of salicylic acid adsorption onto IRA-93: Experimental and modeling.
Korean Journal of Chemical Engineering, 26(5):1208-1212.
[48] Kataoka, T., Yoshida, H., Ueyama, K., 1972. Mass transfer in laminar region between liquid and packing material surface in the packed bed.
Journal of Chemical Engineering of Japan, 5(2):132-136.
[49] Ko, D.C.K., Porter, J.F., McKay, G., 2000. Optimised correlations for the fixed-bed adsorption of metal ions on bone char.
Chemical Engineering Science, 55(23):5819-5829.
[50] Ko, D.C.K., Porter, J.F., McKay, G., 2001. Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char.
Water Research, 35(16):3876-3886.
[51] Ko, D.C.K., Porter, J.F., McKay, G., 2002. A branched pore model analysis for the adsorption of acid dyes on activated carbon.
Adsorption, 8(3):171-188.
[52] Ko, D.C.K., Porter, J.F., McKay, G., 2003. Mass transport model for the fixed bed sorption of metal ions on bone char.
Industrial & Engineering Chemistry Research, 42(14):3458-3469.
[53] Ko, D.C.K., Porter, J.F., McKay, G., 2005. Application of the concentration-dependent surface diffusion model on the multicomponent fixed-bed adsorption systems.
Chemical Engineering Science, 60(20):5472-5479.
[54] Langmuir, I., 1916. The constitution and fundmental properties of solids and liquids. part I. Solids.
Journal of the American Chemical Society, 38(11):2221-2295.
[55] Lee, V.K.C., McKay, G., 2004. Comparison of solutions for the homogeneous surface diffusion model applied to adsorption systems.
Chemical Engineering Journal, 98(3):255-264.
[56] Lee, V.K.C., Porter, J.F., McKay, G., Mathews, A.P., 2005. Application of solid-phase concentration-dependent HSDM to the acid dye adsorption system.
AIChE Journal, 51(1):323-332.
[57] Lin, S.H., Wang, C.S., Chang, C.H., 2002. Removal of methyl
tert-butyl ether from contaminated water by macro-reticular resin.
Industrial & Engineering Chemistry Research, 41(16):4116-4121.
[58] Liu, B., Zeng, L., Ren, Q., 2010. Simulation of levulinic acid adsorption in packed beds using parallel pore/surface diffusion model.
Chemical Engineering & Technology, 33(7):1146-1152.
[59] Lo, I., Alok, P.A., 1996. Computer simulation of activated carbon adsorption for multi-component systems.
Environment International, 22(2):239-252.
[60] Maji, S.K., Pal, A., Pal, T., Adak, A., 2007. Modeling and fixed bed column adsorption of As (III) on laterite soil.
Separation and Purification Technology, 56(3):284-290.
[61] Malek, A., Farooq, S., 1996. Comparison of isotherm models for hydrocarbon adsorption on activated carbon.
AIChE Journal, 42(11):3191-3201.
[62] Mathews, A., Weber, W.J.J., 1977. Effects of external mass transfer and intraparticle diffusion on adsorption rates in slurry reactors.
AIChE Symposium Series, 73:91-94.
[63] McKay, G., 1979. Basic dye adsorption on activated carbon.
Water, Air, & Soil Pollution, 12(3):307-317.
[64] McKay, G., 1984. Analytical solution using a pore diffusion model for a pseudoirreversible isotherm for the adsorption of basic dye on silica.
AIChE Journal, 30(4):692-697.
[65] McKay, G., 2001. Solution to the homogeneous surface diffusion model for batch adsorption systems using orthogonal collocation.
Chemical Engineering Journal, 81(1-3):213-221.
[66] McKay, G., Al-Duri, B., 1988. Prediction of bisolute adsorption isotherms using single-component data for dye adsorption onto carbon.
Chemical Engineering Science, 43(5):1133-1142.
[67] Medved, I., Cerny, R., 2011. Surface diffusion in porous media: A critical review.
Microporous and Mesoporous Materials, 142(2-3):405-422.
[68] Meng, M.J., Wang, Z.P., Ma, L., Zhang, M., Wang, J., Dai, X.H., Yan, Y.S., 2012. Selective adsorption of methylparaben by submicrosized molecularly imprinted polymer: batch and dynamic flow mode studies.
Industrial & Engineering Chemistry Research, 51(45):14915-14924.
[69] Murillo, R., Garcıa, T., Ayln, E., Calln, M.S., Navarro, M.V., Lpez, J.M., Mastral, A.M., 2004. Adsorption of phenanthrene on activated carbons: Breakthrough curve modeling.
Carbon, 42(10):2009-2017.
[70] Myers, A., Prausnitz, J.M., 1965. Thermodynamics of mixed-gas adsorption.
AIChE Journal, 11(1):121-127.
[71] Nakao, S., Suzuki, M., 1983. Mass transfer coefficient in cyclic adsorption and desorption.
Journal of Chemical Engineering of Japan, 16(2):114-119.
[72] Neretnieks, I., 1976. Adsorption in finite bath and countercurrent flow with systems having a concentration dependant coefficient of diffusion.
Chemical Engineering Science, 31(6):465-471.
[73] Nwabanne, J.T., Igbokwe, P.K., 2012. Kinetic modeling of heavy metals adsorption on fixed bed column.
International Journal of Environmental Research, 6(4):945-952.
[74] Ohashi, H., Sugawara, T., Kikuchi, K.I., Konno, H., 1981. Correlation of liquid-side mass transfer coefficient for single particles and fixed beds.
Journal of Chemical Engineering of Japan, 14(6):433-438.
[75] Pan, B.C., Meng, F.W., Chen, X.Q., Pan, B.J., Li, X.T., Zhang, W.M., Zhang, X., Chen, J.L., Zhang, Q.X., Sun, Y., 2005. Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent.
Journal of Hazardous Materials, 124(1-3):74-80.
[76] Pearl, R., 1977.
The Biology of Population Growth, Ayer Co. Pub,:
[77] Peel, R.G., Benedek, A., Crowe, C.M., 1981. A branched pore kinetic model for activated carbon adsorption.
AIChE Journal, 27(1):26-32.
[78] Plazinski, W., Rudzinski, W., Plazinska, A., 2009. Theoretical models of sorption kinetics including a surface reaction mechanism: a review.
Advances in Colloid and Interface Science, 152(1-2):2-13.
[79] Purtolas, B., Lpez, M.R., Navarro, M.V., Lpez, J.M., Murillo, R., Garca, T., Mastra, A.M., 2010. Modelling the breakthrough curves obtained from the adsorption of propene onto microporous inorganic solids.
Adsorption Science & Technology, 28(8):761-775.
[80] Quek, S., Al-Duri, B., 2007. Application of film-pore diffusion model for the adsorption of metal ions on coir in a fixed-bed column.
Chemical Engineering and Processing Process Intensification, 46(5):477-485.
[81] Radke, C., Prausnitz, J., 1972. Thermodynamics of multisolute adsorption from dilute liquid solutions.
AIChE Journal, 18(4):761-768.
[82] Roberts, P.V., Cornel, P., Summers, R.S., 1985. External mass-transfer rate in fixed-bed adsorption.
Journal of Environmental Engineering, 111(6):891-905.
[83] Ruthven, D.M., 1984.
Principles of Adsorption and Adsorption Processes, Wiley-Interscience,:
[84] Scott, D., Dullien, F., 1962. Diffusion of ideal gases in capillaries and porous solids.
AIChE Journal, 8(1):113-117.
[85] Seidel-Morgenstern, A., 2004. Experimental determination of single solute and competitive adsorption isotherms.
Journal of Chromatography A, 1037(1-2):255-272.
[86] Senthilkumar, R., Vijayaraghavan, K., Thilakavathi, M., Iyer, P.V.R., Velan, M., 2006. Seaweeds for the remediation of wastewaters contaminated with zinc (II) ions.
Journal of Hazardous Materials, 136(3):791-799.
[87] Silva, E.A., Vaz, L.G.L., Veit, M.T., Fagundes-Klen, M.R., Cossich, E.S., Tavares, C.R.G., Cardozo-Filho, L., Guirardello, R., 2010. Biosorption of chromium (III) and copper (II) ions onto marine Alga
Sargassum sp. in a fixed-bed column.
Adsorption Science & Technology, 28(5):449-464.
[88] Sips, R., 1948. Combined form of Langmuir and Freundlich equations.
The Journal of Chemical Physics, 16(5):490-495.
[89] Sperlich, A., Werner, A., Genz, A., Amy, G., Worch, E., Jekel, M., 2005. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches.
Water Research, 39(6):1190-1198.
[90] Srivastava, V., Prasad, B., Mishra, I.M., Mall, I.D., Swamy, M.M., 2008. Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed.
Industrial & Engineering Chemistry Research, 47(5):1603-1613.
[91] Szukiewicz, M.K., 2000. New approximate model for diffusion and reaction in a porous catalyst.
AIChE Journal, 46(3):661-665.
[92] Szukiewicz, M.K., 2002. An approximate model for diffusion and reaction in a porous pellet.
Chemical Engineering Science, 57(8):1451-1457.
[93] Tan, A.Y., Prasher, B.D., Guin, J.A., 1975. Mass transfer in nonuniform packing.
AIChE Journal, 21(2):396-397.
[94] Temkin, M., Pyzhev, V., 1940. Kinetics of ammonia synthesis on promoted iron catalysts.
Acta Physiochimica URSS, 12:327-356.
[95] Tien, C., 1994.
Adsorption Calculations and Modeling, Butterworth-Heinemann Boston,:
[96] Toth, J., 1971. State equations of the solid-gas interface layers.
Acta Chimica Academiae Scientiarum Hungaricae, 69(3):311-328.
[97] Traylor, S.J., Xu, X., Lenhoff, A.M., 2011. Shrinking core modeling of binary chromatographic breakthrough.
Journal of Chromatography A, 1218(16):2222-2231.
[98] Wakao, N., Funazkri, T., 1978. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of Sherwood numbers.
Chemical Engineering Science, 33(10):1375-1384.
[99] Wang, Y.H., Lin, S.H., Juang, R.S., 2003. Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents.
Journal of Hazardous Materials, 102(2-3):291-302.
[100] Warchoł, J., Petrus, R., 2006. Modeling of heavy metal removal dynamics in clinoptilolite packed beds.
Microporous and Mesoporous Materials, 93(1-3):29-39.
[101] Weber, W., Smith, E., 1987. Simulation and design models for adsorption processes.
Environmental Science and Technology, 21(11):1040-1050.
[102] Wilke, C., Chang, P., 1955. Correlation of diffusion coefficients in dilute solutions.
AIChE Journal, 1(2):264-270.
[103] Williamson, J., Bazaire, K., Geankoplis, C.J., 1963. Liquid-phase mass transfer at low Reynolds numbers.
Industrial & Engineering Chemistry Fundamentals, 2(2):126-129.
[104] Wilson, E., Geankoplis, C., 1966. Liquid mass transfer at very low Reynolds numbers in packed beds.
Industrial & Engineering Chemistry Fundamentals, 5(1):9-14.
[105] Wolborska, A., 1989. Adsorption on activated carbon of
p-nitrophenol from aqueous solution.
Water Research, 23(1):85-91.
[106] Wolborska, A., 1989. Determination of mass transfer coefficient adsorption in a fixed bed.
Inzynieria Chemiczna I Procesowa, 4:545-556.
[107] Wolborska, A., Pustelnik, P., 1996. A simplified method for determination of the break-through time of an adsorbent layer.
Water Research, 30(11):2643-2650.
[108] Worch, E., 1993. Eine neue gleichung zur berechnung von diffusionskoeffizienten gelöster stoffe.
Vom Wasser, (in German),81:289-297.
[109] Worch, E., 2008. Fixed-bed adsorption in drinking water treatment: a critical review on models and parameter estimation.
Journal of Water Supply Research and TechnologyAQUA, 57(3):171-183.
[110] Xue, W.B., Yi, A.H., Zhang, Z.Q., Tang, C.L., Zhang, X.C., Gao, J.M., 2009. A new competitive adsorption isothermal model of heavy metals in soils.
Pedosphere, 19(2):251-257.
[111] Yan, G., Viraraghavan, T., Chen, M., 2001. A new model for heavy metal removal in a biosorption column.
Adsorption Science & Technology, 19(1):25-43.
[112] Yang, X.Y., Al-Duri, B., 2001. Application of branched pore diffusion model in the adsorption of reactive dyes on activated carbon.
Chemical Engineering Journal, 83(1):15-23.
[113] Yao, C., Tien, C., 1993. Approximations of uptake rate of spherical adsorbent pellets and their application to batch adsorption calculations.
Chemical Engineering Science, 48(1):187-198.
[114] Yi, H.H., Deng, H., Tang, X.L., Yu, Q.F., Zhou, X., Liu, H.Y., 2012. Adsorption equilibrium and kinetics for SO
2, NO, CO
2 on zeolites FAU and LTA.
Journal of Hazardous Materials, 203-204:111-117.
[115] Yoon, Y.H., James, H.N., 1984. Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life.
The American Industrial Hygiene Association Journal, 45(8):509-516.
[116] Yun, J.X., Yao, S.J., Lin, D.Q., Lu, M.H., Zhao, W.T., 2004. Modeling axial distributions of adsorbent particle size and local voidage in expanded bed.
Chemical Engineering Science, 59(2):449-457.
[117] Zhang, R., Ritter, J.A., 1997. New approximate model for nonlinear adsorption and diffusion in a single particle.
Chemical Engineering Science, 52(18):3161-3172.
[118] Zhao, Y., Shen, Y.M., Bai, L., Ni, S.Q., 2012. Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling.
Applied Surface Science, 261:708-716.
Open peer comments: Debate/Discuss/Question/Opinion
<1>