CLC number: U45
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-06-23
Cited: 3
Clicked: 7683
Xue-yan Liu, Da-jun Yuan. An in-situ slurry fracturing test for slurry shield tunneling[J]. Journal of Zhejiang University Science A, 2014, 15(7): 465-481.
@article{title="An in-situ slurry fracturing test for slurry shield tunneling",
author="Xue-yan Liu, Da-jun Yuan",
journal="Journal of Zhejiang University Science A",
volume="15",
number="7",
pages="465-481",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400028"
}
%0 Journal Article
%T An in-situ slurry fracturing test for slurry shield tunneling
%A Xue-yan Liu
%A Da-jun Yuan
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 7
%P 465-481
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400028
TY - JOUR
T1 - An in-situ slurry fracturing test for slurry shield tunneling
A1 - Xue-yan Liu
A1 - Da-jun Yuan
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 7
SP - 465
EP - 481
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400028
Abstract: When performing a slurry shield excavation in the shallow earth cover under a waterway, the support pressure is difficult to calibrate. If not carefully monitored, slurry fracturing or even slurry breakout can occur; water from the river can rush into the slurry circulating system, threatening the security of the project. In this study, an in-situ slurry fracturing apparatus was created to analyze the phenomena of slurry fracturing and fracture propagation. First, the fracturing test procedures and the method of identifying slurry fracturing are introduced. Then, mechanical models of the slurry fracturing and fracture propagation are described and validated with in-situ tests. The models provide fairly good predictions: the driving pressure is related to the properties of both the soil and slurry. Slurry with large parameters for bulk density and viscosity is beneficial for preventing slurry fracturing propagation. However, such parameters have little influence and can be neglected when determining the initial fracturing pressure. Preventing slurry fracturing and breakout is important for not only shield tunnel preparation, but also shield tunneling under dangerous conditions. A crucial factor is setting and limiting the maximum support pressure values. These pressures can be obtained through the in-situ tests and mechanical models described here. These results provide useful references for the Weisan Road Tunnel to be built under the Yangtze River in Nanjing, China.
Open peer comments: Debate/Discuss/Question/Opinion
<1>