Full Text:   <3097>

Summary:  <2291>

CLC number: X592

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-03-25

Cited: 3

Clicked: 4947

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-dong Li

http://orcid.org/0000-0002-5331-5968

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.4 P.316-325

http://doi.org/10.1631/jzus.A1400142


Emission characteristics of hazardous components in municipal solid waste incinerator residual ash


Author(s):  Xiao-dong Li, Yong Ren, Sha-sha Ji, Xia-li Hou, Tong Chen, Sheng-yong Lu, Jian-hua Yan

Affiliation(s):  State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   lixd@zju.edu.cn

Key Words:  Residual ash, Poly-chlorobenzenes (PCBzs), Polycyclic aromatic hydrocarbons (PAHs), Heavy metal, Municipal solid waste incineration (MSWI)


Xiao-dong Li, Yong Ren, Sha-sha Ji, Xia-li Hou, Tong Chen, Sheng-yong Lu, Jian-hua Yan. Emission characteristics of hazardous components in municipal solid waste incinerator residual ash[J]. Journal of Zhejiang University Science A, 2015, 16(4): 316-325.

@article{title="Emission characteristics of hazardous components in municipal solid waste incinerator residual ash",
author="Xiao-dong Li, Yong Ren, Sha-sha Ji, Xia-li Hou, Tong Chen, Sheng-yong Lu, Jian-hua Yan",
journal="Journal of Zhejiang University Science A",
volume="16",
number="4",
pages="316-325",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400142"
}

%0 Journal Article
%T Emission characteristics of hazardous components in municipal solid waste incinerator residual ash
%A Xiao-dong Li
%A Yong Ren
%A Sha-sha Ji
%A Xia-li Hou
%A Tong Chen
%A Sheng-yong Lu
%A Jian-hua Yan
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 4
%P 316-325
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400142

TY - JOUR
T1 - Emission characteristics of hazardous components in municipal solid waste incinerator residual ash
A1 - Xiao-dong Li
A1 - Yong Ren
A1 - Sha-sha Ji
A1 - Xia-li Hou
A1 - Tong Chen
A1 - Sheng-yong Lu
A1 - Jian-hua Yan
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 4
SP - 316
EP - 325
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400142


Abstract: 
In this study, eight fly ash samples and three bottom ash samples from different areas are collected for analysis of their physicochemical properties and emission content of dioxin precursors and metals. Their surface characteristics, their effects on dioxin precursors, and important aspects of the compositions of residual ash (fly ash and bottom ash) are investigated. poly-chlorobenzenes (PCBzs) in the fly ash of a fluidized bed incinerator (FBI) are 7.35 to 357.94 µg/kg, and in that of a fire grate incinerator (FGI) are 6.74 to 96.52 µg/kg. The concentrations in bottom ash are the same (i.e., 2.23 to 2.99 µg/kg) regardless of the furnace type. The concentrations of polycyclic aromatic hydrocarbons (PAHs) in FGI fly ash samples (0.293 to 1.783 mg/kg) are less than these in samples from FBIs (1.820 to 38.012 mg/kg). Low boiling point PAHs (mainly 2- and 3-ringed PAHs) and high boiling point PCBzs (mainly HxCB and PeCBz) are the major constituents of residual ash. Different distributions of PCBzs and PAHs are mainly dictated by the incineration characteristics of FBI and FGI. Al and Fe, as non-toxic “light metals” are the major constituents of the residual ash, and Ni and Zn as non-toxic heavy metals play important roles in the total heavy metal. Cu, Pb, and Cr are the three major toxic heavy metals. The correlation of the metals and the dioxin precursors is discussed and distinguished.

The paper is interesting since it investigates the composition of the residues of the incineration activities by comparing grate and boiler furnaces and by analyzing the correlations between the principal metals and the dioxins precursors.

生活垃圾焚烧残灰中有毒成分的排放特性

目的:探索中国生活垃圾焚烧残灰中重金属、氯苯、多环芳烃等有毒成分的排放特性、排放水平及相互之间的关联特性,并认识其产生、排放与焚烧炉型、焚烧条件的关联,以探索控制其危害的有效方法。
方法:1. 对中国几个典型的生活垃圾焚烧炉现场采样,获得多个飞灰和底渣的样品;2. 通过多种不同的检测手段和方法,分别检测残灰的基本物理化学特性、氯苯、多环芳烃和主要金属元素的浓度;3. 结合焚烧炉型和焚烧特性等条件,分析各有毒成分的排放特性和相互之间的关联特性。
结论:1. 氯苯、多环芳烃和重金属受焚烧因素影响,在残灰中的排放特性各不相同,流化床焚烧炉能消除焚烧和原始垃圾的扰动,能控制氯苯在残灰中的排放,但多环芳烃排放控制不如炉排焚烧炉;2. 残灰中主要的有机有毒成分为高氯代氯苯和2至4环等少环类多环芳烃;3. 氯苯和多环芳烃在残灰中的含量可能因为不同的产生机理而表现出一定的负关联特点;4. 残灰中的金属主要为铝和铁等轻金属,浓度远高于重金属元素,而无毒重金属(主要为Mn、Ni、As和Zn)浓度高于有毒重金属元素(Cu、Pb和Cr),且不同金属表现出不同的对氯苯和多环芳烃的催化促进或抑制作用。

关键词:残灰;氯苯;多环芳烃;重金属;生活垃圾焚烧

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bauschlicher, C.W.Jr, Ricca, A., 2000. Mechanisms for polycyclic aromatic hydrocarbon (PAH) growth. Chemical Physics Letters, 326(3-4):283-287.

[2]Besombes, J.L., Maitre, A., Patissier, O., et al., 2001. Particulate PAHs observed in the surrounding of a municipal incinerator. Atmospheric Environment, 35(35):6093-6104.

[3]Bodénan, F., Deniard, P., 2003. Characterization of flue gas cleaning residues from European solid waste incinerators: assessment of various Ca-based sorbent processes. Chemosphere, 51(5):335-347.

[4]Böhm, H., Jander, H., 1999. PAH formation in acetylene-benzene pyrolysis. Physical Chemistry Chemical Physics, 1(16):3775-3781.

[5]Chin, Y.T., Lin, C., Chang-Chien, G.P., et al., 2011. PCDD/Fs formation catalyzed by the copper chloride in the fly ash. Journal of Environmental Science and Health, Part A, 46(5):465-470.

[6]Chin, Y.T., Lin, C., Chang-Chien, G.P., et al., 2012. PCDD/F formation catalyzed by the metal chlorides and chlorinated aromatic compounds in fly ash. Aerosol Air Quality Research, 12:228-236.

[7]Cho, C.H., Ihm, S.K., 2002. Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants. Environmental Science & Technology, 36(7):1600-1606.

[8]Dai, Q., Jiang, X., Jiang, Y., et al., 2014. Temperature influence and distribution in three phases of PAHs in wet sewage sludge pyrolysis using conventional and microwave heating. Energy & Fuels, 28(5):3317-3325.

[9]Dyke, P.H., Foan, C., Fiedler, H., 2003. PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere, 50(4):469-480.

[10]Everaert, K., Baeyens, J., 2002. The formation and emission of dioxins in large scale thermal processes. Chemosphere, 46(3):439-448.

[11]Frey, H.H., Peters, B., Hunsinger, H., et al., 2003. Characterization of municipal solid waste combustion in a grate furnace. Waste Management, 23(8):689-701.

[12]Fujimori, T., Takaoka, M., Takeda, N., 2009. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash. Environmental Science & Technology, 43(21):8053-8059.

[13]Grosso, M., Biganzoli, L., Rigamonti, L., 2011. A quantitative estimate of potential aluminium recovery from incineration bottom ashes. Resources, Conservation and Recycling, 55(12):1178-1184.

[14]Gullett, B.K., Bruce, K.R., Beach, L.O., 1990. The effect of metal catalysts on the formation of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran precursors. Chemosphere, 20(10):1945-1952.

[15]Hagenmaier, H., Kraft, M., Brunner, H., et al., 1987. Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environmental Science & Technology, 21(11):1080-1084.

[16]Halonen, I., Tarhanen, J., Ruokojärvi, P., et al., 1995. Effect of catalysts and chlorine source on the formation of organic chlorinated compounds. Chemosphere, 30(7):1261-1273.

[17]Iino, F., Imagawa, T., Takeuchi, M., et al., 1999. De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes. Environmental Science & Technology, 33(7):1038-1043.

[18]Ji, S.S., Li, X.D., Ren, Y., et al., 2013. Ozone-enhanced oxidation of PCDD/Fs over V2O5-TiO2-based catalyst. Chemosphere, 92(3):265-272.

[19]Johansson, I., van Bavel, B., 2003. Polycyclic aromatic hydrocarbons in weathered bottom ash from incineration of municipal solid waste. Chemosphere, 53(2):123-128.

[20]Kirso, U., Laja, M., Urb, G., 2005. Polycyclic aromatic hydrocarbons (PAH) in ash fractions of oil shale combustion: fluidized bed vers pulverized firing. Oil Shale, 22(4):537-545.

[21]Li, X.D., Yan, J.H., Ni, M.J., et al., 2001. Study on mixing performance of municipal solid waste (MSW) in differential density fluidized beds (FBs). Chemical Engineering Journal, 84(2):161-166.

[22]Lichtenberger, J., Amiridis, M.D., 2004. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. Journal of Catalysis, 223(2):296-308.

[23]Liu, K., Pan, W.P., Riley, J.T., 2000. A study of chlorine behavior in a simulated fluidized bed combustion system. Fuel, 79(9):1115-1124.

[24]Liu, K., Han, W., Pan, W.P., et al., 2001. Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system. Journal of Hazardous Materials, 84(2-3):175-188.

[25]Ma, X.C., Zeng, X.P., Liu, J.T., et al., 2013. Technology to control PCDD/Fs from MSW incineration processes. Advanced Materials Research, 610:2621-2626.

[26]Mastral, A.M., Callén, M.S., García, T., 1999. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion. Environmental Science & Technology, 33(18):3177-3184.

[27]McKay, G., 2002. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chemical Engineering Journal, 86(3):343-368.

[28]MEPC (Ministry of Environmental Protection China), 2002. Water Quality–Determination of Chlorobenzene–Gas Chro-matography, HJ/T 74-2001. MEPC, China (in Chinese).

[29]Öberg, T., Bergbäck, B., Öberg, E., 2007. Different catalytic effects by copper and chromium on the formation and degradation of chlorinated aromatic compounds in fly ash. Environmental Science & Technology, 41(10):3741-3746.

[30]Öberg, T., Bergbäck, B., Filipsson, M., 2008. Catalytic effects by metal oxides on the formation and degradation of chlorinated aromatic compounds in fly ash. Chemosphere, 71(6):1135-1143.

[31]Olie, K., Addink, R., Schoonenboom, M., 1998. Metals as catalysts during the formation and decomposition of chlorinated dioxins and furans in incineration processes. Journal of the Air & Waste Management Association, 48(2):101-105.

[32]Park, Y.J., Heo, J., 2002. Vitrification of fly ash from municipal solid waste incinerator. Journal of Hazardous Materials, 91(1-3):83-93.

[33]Quina, M.J., Bordado, J.C., Quinta-Ferreira, R.M., 2008. Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Management, 28(11):2097-2121.

[34]Saxena, S.C., Jotshi, C.K., 1994. Fluidized-bed incineration of waste materials. Progress in Energy and Combustion Science, 20(4):281-324.

[35]Takaoka, M., Yamamoto, T., Shiono, A., et al., 2005. The effect of copper speciation on the formation of chlorinated aromatics on real municipal solid waste incinerator fly ash. Chemosphere, 59(10):1497-1505.

[36]USEPA (US Environmental Protection Agency), 1986. Polynuclear Aromatic Hydrocarbons, Method 8100.

[37]USEPA (US Environmental Protection Agency), 1996a. Soxhlet Extraction, Method 3540C.

[38]USEPA (US Environmental Protection Agency), 1996b. Sulfur Cleanup, Method 3660B.

[39]van Caneghem, J., Vandecasteele, C., 2014. Characterisation of polycyclic aromatic hydrocarbons in flue gas and residues of a full scale fluidized bed combustor combusting non-hazardous industrial waste. Waste Management, 34(11):2407-2413.

[40]van Caneghem, J., Brems, A., Lievens, P., et al., 2012. Fluidized bed waste incinerators: design, operational and environmental issues. Progress in Energy and Combustion Science, 38(4):551-582.

[41]Wang, D., Xu, X., Zheng, M., et al., 2002. Effect of copper chloride on the emissions of PCDD/Fs and PAHs from PVC combustion. Chemosphere, 48(8):857-863.

[42]Weber, R., Iino, F., Imagawa, T., et al., 2001. Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere, 44(6):1429-1438.

[43]Wei, M.C., Wey, M.Y., Hwang, J.H., et al., 1998. Stability of heavy metals in bottom ash and fly ash under various incinerating conditions. Journal of Hazardous Materials, 57(1-3):145-154.

[44]Wei, Y., Shimaoka, T., Saffarzadeh, A., et al., 2011. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. Journal of Hazardous Materials, 187(1-3):534-543.

[45]Wilhelm, J., Stieglitz, L., Dinjus, E., et al., 2001. Mechanistic studies on the role of PAHs and related compounds in PCDD/F formation on model fly ashes. Chemosphere, 42(5-7):797-802.

[46]Yan, M., Li, X., Chen, T., et al., 2010. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs. Journal of Environmental Sciences, 22(10):1637-1642.

[47]Yasuda, K., Takahashi, M., 1998. The emission of polycyclic aromatic hydrocarbons from municipal solid waste incinerators during the combustion cycle. Journal of the Air & Waste Management Association, 48(5):441-447.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE